Service of SURF
© 2025 SURF
The objective of this study was to determine the feasibility and efficacy of an exercise training program to improve exercise capacity and fatigue level in pediatric patients with end-stage renal disease (ESRD). Twenty children on dialysis intended to perform a 12-week graded community-based exercise program. Exercise capacity and fatigue level were studied; muscle force and health-related quality of life were secondary outcomes. All outcomes were measured at baseline (T = 0) and after intervention (T = 1). Fourteen of the 20 patients (70%) either did not start the program or did not complete the program. Of these patients, seven did not complete or even start the exercise program because of a combination of lack of time and motivational problems. Six patients were not able to continue the program or were unable to do the follow-up measurements because of medical problems. Exercise capacity and muscle strength was higher after the exercise program in the children who completed the training. In conclusion, exercise training is difficult to perform in children with ESRD and is not always feasible in real-life situations for many children with ESRD.
End-stage kidney disease patients treated with conventional hemodialysis (CHD) are known to have impaired physical performance and protein-energy wasting (PEW). Nocturnal hemodialysis (NHD) was shown to improve clinical outcomes, but the evidence is limited on physical performance and PEW. We investigate whether NHD improves physical performance and PEW. This prospective, multicenter, non-randomized cohort study compared patients who changed from CHD (2-4 times/week 3-5 h) to NHD (2-3 times/week 7-8 h), with patients who continued CHD. The primary outcome was physical performance at 3, 6 and 12 months, assessed with the short physical performance battery (SPPB). Secondary outcomes were a 6-minute walk test (6MWT), physical activity monitor, handgrip muscle strength, KDQOL-SF physical component score (PCS) and LAPAQ physical activity questionnaire. PEW was assessed with a dietary record, dual-energy X-ray absorptiometry, bioelectrical impedance spectroscopy and subjective global assessment (SGA). Linear mixed models were used to analyze the differences between groups. This study included 33 patients on CHD and 32 who converted to NHD (mean age 55 ± 15.3). No significant difference was found in the SPPB after 1-year of NHD compared to CHD (+0.24, [95% confidence interval -0.51 to 0.99], p = 0.53). Scores of 6MWT, PCS and SGA improved (+54.3 [95%CI 7.78 to 100.8], p = 0.02; +5.61 [-0.51 to 10.7], p = 0.03; +0.71 [0.36 to 1.05], p < 0.001; resp.) in NHD patients, no changes were found in other parameters. We conclude that NHD patients did not experience an improved SPPB score compared to CHD patients; they did obtain an improved walking distance and self-reported PCS as well as SGA after 1-year of NHD, which might be related to the younger age of these patients.
Development of novel testing strategies to detect adverse human health effects is of interest to replace in vivo-based drug and chemical safety testing. The aim of the present study was to investigate whether physiologically based kinetic (PBK) modeling-facilitated conversion of in vitro toxicity data is an adequate approach to predict in vivo cardiotoxicity in humans. To enable evaluation of predictions made, methadone was selected as the model compound, being a compound for which data on both kinetics and cardiotoxicity in humans are available. A PBK model for methadone in humans was developed and evaluated against available kinetic data presenting an adequate match. Use of the developed PBK model to convert concentration–response curves for the effect of methadone on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in the so-called multi electrode array (MEA) assay resulted in predictions for in vivo dose–response curves for methadone-induced cardiotoxicity that matched the available in vivo data. The results also revealed differences in protein plasma binding of methadone to be a potential factor underlying variation between individuals with respect to sensitivity towards the cardiotoxic effects of methadone. The present study provides a proof-of-principle of using PBK modeling-based reverse dosimetry of in vitro data for the prediction of cardiotoxicity in humans, providing a novel testing strategy in cardiac safety studies.
MULTIFILE