Service of SURF
© 2025 SURF
A transparent and comparable understanding of the energy efficiency, carbon footprint, and environmental impacts of renewable resources are required in the decision making and planning process towards a more sustainable energy system. Therefore, a new approach is proposed for measuring the environmental sustainability of anaerobic digestion green gas production pathways. The approach is based on the industrial metabolism concept, and is expanded with three known methods. First, the Material Flow Analysis method is used to simulate the decentralized energy system. Second, the Material and Energy Flow Analysis method is used to determine the direct energy and material requirements. Finally, Life Cycle Analysis is used to calculate the indirect material and energy requirements, including the embodied energy of the components and required maintenance. Complexity will be handled through a modular approach, which allows for the simplification of the green gas production pathway while also allowing for easy modification in order to determine the environmental impacts for specific conditions and scenarios. Temporal dynamics will be introduced in the approach through the use of hourly intervals and yearly scenarios. The environmental sustainability of green gas production is expressed in (Process) Energy Returned on Energy Invested, Carbon Footprint, and EcoPoints. The proposed approach within this article can be used for generating and identifying sustainable solutions. By demanding a clear and structured Material and Energy Flow Analysis of the production pathway and clear expression for energy efficiency and environmental sustainability the analysis or model can become more transparent and therefore easier to interpret and compare. Hence, a clear ruler and measuring technique can aid in the decision making and planning process towards a more sustainable energy system.
LINK
To avoid energy scarcity as well as climate change, a transition towards a sustainable society must be initiated. Within this context, governmental bodies and/or companies often note sustainability as an end goal, for instance as a green circular economy. However, if sustainability cannot be clearly defined as an end goal or measured uniformly and transparently, then the direction and progress towards this goal can only be roughly followed. A clear understanding of and a transparent, uniform measuring technique for sustainability are hence required for sustainable and circular (renewable) energy production pathways (REPPs), as society is asking for an integrated and understandable overview of the decision-making and planning process towards a future sustainable energy system. Therefore, within this dissertation, a new approach is proposed for measuring and optimizing the sustainability of REPPs; it is useful for the analysis, comparison, and optimization of REPP systems on all elements of sustainability. The new approach is applied and tested on a case based on farm-scale, anaerobic digestion (AD), biogas production pathways.
LINK
The past two years I have conducted an extensive literature and tool review to answer the question: “What should software engineers learn about building production-ready machine learning systems?”. During my research I noted that because the discipline of building production-ready machine learning systems is so new, it is not so easy to get the terminology straight. People write about it from different perspectives and backgrounds and have not yet found each other to join forces. At the same time the field is moving fast and far from mature. My focus on material that is ready to be used with our bachelor level students (applied software engineers, profession-oriented education), helped me to consolidate everything I have found into a body of knowledge for building production-ready machine learning (ML) systems. In this post I will first define the discipline and introduce the terminology for AI engineering and MLOps.
LINK
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Artificial Intelligence (AI) wordt realiteit. Slimme ICT-producten die diensten op maat leveren accelereren de digitalisering van de maatschappij. De grote innovaties van de komende jaren –zelfrijdende auto’s, spraakgestuurde virtuele assistenten, autodiagnose systemen, robots die autonoom complexe taken uitvoeren – zijn datagedreven en hebben een AI-component. Dit gaat de rol van professionals in alle domeinen, gezondheidzorg, bouwsector, financiële dienstverlening, maakindustrie, journalistiek, rechtspraak, etc., raken. ICT is niet meer volgend en ondersteunend (een ‘enabling’ technologie), maar de motor die de transformatie van de samenleving in gang zet. Grote bedrijven, overheidsinstanties, het MKB, en de vele startups in de Brainport regio zijn innovatieve datagedreven scenario’s volop aan het verkennen. Dit wordt nog eens versterkt door de democratisering van AI; machine learning en deep learning algoritmes zijn beschikbaar zowel in open source software als in Cloud oplossingen en zijn daarmee toegankelijk voor iedereen. Data science wordt ‘applied’ en verschuift van een PhD specialisme naar een HBO-vaardigheid. Het stadium waarin veel bedrijven nu verkeren is te omschrijven als: “Help, mijn AI-pilot is succesvol. Wat nu?” Deze aanvraag richt zich op het succesvol implementeren van AI binnen de context van softwareontwikkeling. De onderzoeksvraag van dit voorstel is: “Hoe kunnen we state-of-the-art data science methoden en technieken waardevol en verantwoord toepassen ten behoeve van deze slimme lerende ICT-producten?” De postdoc gaat fungeren als een linking pin tussen alle onderzoeksprojecten en opdrachten waarbij studenten ICT-producten met AI (machine learning, deep learning) ontwikkelen voor opdrachtgevers uit de praktijk. Door mee te kijken en mee te denken met de studenten kan de postdoc overzicht en inzicht creëren over alle cases heen. Als er overzicht is kan er daarna ook gestuurd worden op de uit te voeren cases om verschillende deelaspecten samen met de studenten te onderzoeken. Deliverables zijn rapporten, guidelines en frameworks voor praktijk en onderwijs, peer-reviewed artikelen en kennisdelingsevents.
Sea Lettuce, Ulva spp. is a versatile and edible green seaweed. Ulva spp is high in protein, carbohydrates and lipids (respectively 7%-33%; 33%-62% and 1%-3% on dry weight base [1, 2]) but variation in these components is high. Ulva has the potential to produce up to 45 tons DM/ha/year but 15 tons DM/ha/year is more realistic.[3, 4] This makes Ulva a possible valuable resource for food and other applications. Sea Lettuce is either harvested wild or cultivated in onshore land based aquaculture systems. Ulva onshore aquaculture is at present implemented only on a few locations in Europe on commercial scale because of limited knowledge about Ulva biology and its optimal cultivation systems but also because of its unfamiliarity to businesses and consumers. The objective of this project is to improve Ulva onshore aquaculture by selecting Ulva seed material, optimizing growth and biomass production by applying ecophysiological strategies for nutrient, temperature, microbiome and light management, by optimizing pond systems eg. attached versus free floating production and eventually protoype product development for feed, food and cosmetics.