Service of SURF
© 2025 SURF
Process Mining can roughly be defined as a data-driven approach to process management. The basic idea of process mining is to automatically distill and to visualize business processes using event logs from company IT-systems (e.g. ERP, WMS, CRM etc.) to identify specific areas for improvement at an operational level. An event log can be described as a database entry that signifies a specific action in a software application at a specific time. Simple examples of these actions are customer order entries, scanning an item in a warehouse, and registration of a patient for a hospital check-up.Process mining has gained popularity in the logistics domain in recent years because of three main reasons. Firstly, the logistics IT-systems' large and exponentially growing amounts of event data are being stored and provide detailed information on the history of logistics processes. Secondly, to outperform competitors, most organizations are searching for (new) ways to improve their logistics processes such as reducing costs and lead time. Thirdly, since the 1970s, the power of computers has grown at an astonishing rate. As such, the use of advance algorithms for business purposes, which requires a certain amount of computational power, have become more accessible.Before diving into Process Mining, this course will first discuss some basic concepts, theories, and methods regarding the visualization and improvement of business processes.
MULTIFILE
The value of a decision can be increased through analyzing the decision logic, and the outcomes. The more often a decision is taken, the more data becomes available about the results. More available data results into smarter decisions and increases the value the decision has for an organization. The research field addressing this problem is Decision mining. By conducting a literature study on the current state of Decision mining, we aim to discover the research gaps and where Decision mining can be improved upon. Our findings show that the concepts used in the Decision mining field and related fields are ambiguous and show overlap. Future research directions are discovered to increase the quality and maturity of Decision mining research. This could be achieved by focusing more on Decision mining research, a change is needed from a business process Decision mining approach to a decision focused approach.
From the article: Within the HU University of Applied Sciences (HU) the department HU Services (HUS) has not got enough insight in their IT Service Management processes to align them to the new Information System that is implemented to support the service management function. The problem that rises from this is that it is not clear for the HU how the actual Incident Management process as facilitated by the application is actually executed. Subsequently it is not clear what adjustments have to be made to the process descriptions to have it resemble the process in the IT Service Management tool. To determine the actual process the HU wants to use Process Mining. Therefore the research question for this study is: ‘How is Process Mining applicable to determine the actual Incident Management process and align this to the existing process model descriptions?’ For this research a case study is performed using Process Mining to check if the actual process resembles like the predefined process. The findings show that it is not possible to mine the process within the scope of the predefined process. The event data are too limited in granularity. From this we conclude that adjustment of the granularity of the given process model to the granularity of the used event data or vice versa is important.
LINK
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Kwaliteitscontroles in productieprocessen in de maakindustrie zijn vaak destructief en daarmee niet duurzaam. In dit project onderzoeken we hoe door toepassing van process mining op real time sensor data de kwaliteitscontrole al tijdens het productieproces kan worden uitgevoerd en potentiële problemen vroegtijdig ontdekt.Doel Het doel van het project is om op basis van realtime data de kwaliteit van het eindproduct van het productieproces te kunnen voorspellen en waar nodig het productieproces bij te sturen. Hiermee kan de industrie duurzamer werken. Resultaten Het project levert een AI software toolkit op met methoden en algoritmen voor toepassing in de productieprocessen in verschillende industrieën. Looptijd 15 januari 2021 - 15 november 2024 Aanpak Nieuwe process mining algoritmes worden ontwikkeld en getoetst in case studies bij verschillende industriële bedrijven. Op basis van de uitkomsten wordt een software toolkit ontwikkeld voor toepassing in de praktijk. Impact op onderwijs Studenten van instituut voor ICT gaan, samen met studenten van TU Eindhoven, cases studies uitvoeren bij verschillende industrieën. Cofinanciering Het project wordt gefinancierd door NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek).
Kwaliteitscontroles in productieprocessen in de maakindustrie zijn vaak destructief en daarmee niet duurzaam. In dit project onderzoeken we hoe door toepassing van process mining op real time sensor data de kwaliteitscontrole al tijdens het productieproces kan worden uitgevoerd en potentiële problemen vroegtijdig ontdekt.Doel Het doel van het project is om op basis van realtime data de kwaliteit van het eindproduct van het productieproces te kunnen voorspellen en waar nodig het productieproces bij te sturen. Hiermee kan de industrie duurzamer werken. Resultaten Het project levert een AI software toolkit op met methoden en algoritmen voor toepassing in de productieprocessen in verschillende industrieën. Looptijd 15 januari 2021 - 15 november 2024 Aanpak Nieuwe process mining algoritmes worden ontwikkeld en getoetst in case studies bij verschillende industriële bedrijven. Op basis van de uitkomsten wordt een software toolkit ontwikkeld voor toepassing in de praktijk. Impact op onderwijs Studenten van instituut voor ICT gaan, samen met studenten van TU Eindhoven, cases studies uitvoeren bij verschillende industrieën. Cofinanciering Het project wordt gefinancierd door NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek).