Service of SURF
© 2025 SURF
This article researches factors that influence price fairness judgments. The empirical literature suggests several factors: reference prices, the costs of the seller, a self-interest bias, and the perceived motive of sellers. Using a Dutch sample, we find empirical evidence that these factors significantly affect perceptions of fair prices. In addition, we find that the perceived fairness of prices is also influenced by other distributional concerns that are independent of the transaction. In particular, price increases are judged to be fairer if they benefit poor people or small organizations rather than rich people or big organizations.
This paper researches perceptions of the concept of price fairness in the Dutch coffee market. We distinguish four alternative standards of fair prices based on egalitarian, basic rights, capitalistic and libertarian approaches. We investigate which standards are guiding the perceptions of price fairness of citizens and coffee trade organizations. We find that there is a divergence in views between citizens and key players in the coffee market. Whereas citizens support the concept of fairness derived from the basic rights approach, holding that the price should provide coffee farmers with a minimum level of subsistence, representatives of Dutch coffee traders hold the capitalistic view that the free world market price is fair.
Price transparency is an essential precondition torealize careless cross-border charging in Europe.Unfortunately, in many countries price transparency inEV charging is problematic. A lack of transparency canlead to unnecessary high costs of charging for EV driversand makes it difficult to compare the total cost ofownership. Insight into the prices for public charging isa hurdle that has to be overcome for widespreadadoption of EVs. An introductory overview is presentedof the main regulations, challenges and opportunitiesregarding price transparency in important EV marketsacross Europe. This overview is presented to underscorethe importance for the EU to take next steps.
MULTIFILE
A-das-PK; een APK-straat voor rijhulpsystemen Uit recent onderzoek en vragen vanuit de autobranche blijkt een duidelijke behoefte naar goed onderhoud, reparatie en borging van de werking van Advanced Driver Assistance Systems (ADAS), vergelijkbaar met de reguliere APK. Een APK voor ADAS bestaat nog niet, maar de branche wil hier wel op te anticiperen en haar clientèle veilig laten rijden met de rijhulpsystemen. In 2022 worden 30 ADAS’s verplicht en zal de werking van deze systemen ook gedurende de levensduur van de auto gegarandeerd moeten worden. Disfunctioneren van ADAS, zowel in false positives als false negatives kan leiden tot gevaarlijke situaties door onverwacht rijgedrag van het voertuig. Zo kan onverwacht remmen door detectie van een niet bestaand object of op basis van verkeersborden op parallelwegen een kettingbotsing veroorzaken. Om te kijken welke gevolgen een APK heeft voor de autobranche wil A-das-PK voor autobedrijven kijken naar de benodigde apparatuur, opleiding en hard- en software voor een goed werkende APK-straat voor ADAS’s, zodat de kansrijke elementen in een vervolgonderzoek uitgewerkt kunnen worden.
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge. In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously. The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.