Electromagnetic fields, or EMF, are ubiquitous in our daily life. Extremely low frequency magnetic fields (ELF MF) are generated by any device using electric current. Especially in workplace situations involving MRI scanners, welding equipment, induction heaters, and power plants, they are known for potentially high field strengths. These high field strengths may lead to adverse health effects if insufficient preventive measures are in place. This study investigates employees’ perceptions on work safety regarding EMF exposure. We held 15 semi-structured interviews in three different (non-nuclear) power plants in the Netherlands. We found that power plants in this study made ample use of fences and warning signs where needed, creating a safe working environment. Nevertheless, some workers perceive that there are vague regulations, organizational issues and lack of clarity on the properties of EMF. Participants also indicated that there is some room for improvement with respect to work safety meetings on EMF. Employees want to be informed about EMF and its potential health effects and mitigation methods, but their information need is limited and straightforward. A simple warning system, along with safety information on paper, may be sufficient. https://doi.org/10.1080/13669877.2020.1750459 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
MULTIFILE
Electromagnetic fields, or EMF, are ubiquitous in our daily life. Extremely low frequency magnetic fields (ELF MF) are generated by any device using electric current. Especially in workplace situations involving MRI scanners, welding equipment, induction heaters, and power plants, they are known for potentially high field strengths. These high field strengths may lead to adverse health effects if insufficient preventive measures are in place. This study investigates employees’ perceptions on work safety regarding EMF exposure. We held 15 semi-structured interviews in three different (non-nuclear) power plants in the Netherlands. We found that power plants in this study made ample use of fences and warning signs where needed, creating a safe working environment. Nevertheless, some workers perceive that there are vague regulations, organizational issues and lack of clarity on the properties of EMF. Participants also indicated that there is some room for improvement with respect to work safety meetings on EMF. Employees want to be informed about EMF and its potential health effects and mitigation methods, but their information need is limited and straightforward. A simple warning system, along with safety information on paper, may be sufficient. https://doi.org/10.1080/13669877.2020.1750459 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
MULTIFILE
In het kader van het FLEX P2G project zijn prototypes van een 50 KW PEMWE electrolyser en van een SEM reactor ontwikkeld. Met behulp van deze Power to Gas (P2G) technologie kan door middel van elektrolyse eerst waterstof en vervolgens ‐ na een reactie met CO2‐ methaan worden geproduceerd. Dit onderzoek richt zich op het inzichtelijk maken en identificeren van (niche)markten en het ontwikkelen van business cases voor deze technologie. Hiertoe worden alle kosten en baten van de technologie geïnventariseerd en voor zover mogelijk gemonetariseerd.Er zijn vier mogelijke modellen voor de toepassing van P2G technologie onderzocht. Deze vier modellen kennen elk meerdere varianten. In het dedicated model wordt de elektriciteitsproductie van een PV‐installatie en/of een windturbine volledig benut voor P2G. Het methaan wordt verkochtaan derden. In het Gas voor eigen gebruik model wordt de elektriciteitsproductie van een PVinstallatie of een windturbine ook volledig benut voor P2G. In dit model wordt het geproduceerde methaan door het huishouden of door de onderneming zelf gebruikt om zodoende te besparen op de eigen gasrekening. In het windpark Fryslan model wordt de elektriciteitsproductie van het windparkgeheel of gedeeltelijk benut voor P2G. De belasting van het hoogspanningsnetwerk kan daardoor worden verminderd waardoor investeringen in het verzwaren van dit netwerk kunnen worden vermeden. In het flexibiliteitsmarkt model wordt een P2G‐installatie gebruikt om bij te dragen aanhet balanceren van het elektriciteitsnet. De P2G‐installatie neemt elektriciteit af op momenten van overschotten op het net en wordt daarvoor beloond.Voor de vier modellen en hun varianten is een kosten‐baten analyse opgesteld. De belangrijkste kosten worden veroorzaakt door de investeringen, het onderhoud, de elektriciteit en de CO2. De belangrijkste opbrengsten bestaan uit de opbrengst van methaan, warmte, zuurstof en eventueel uit de vermeden investeringen in de uitbreiding van het hoogspanningsnet.Het FLEX P2G project heeft als doel om een gecombineerde electrolyser en SEM reactor te ontwikkelen met een kostprijs (CAPEX) van € 1.500 per kWe. De jaarlijkse onderhoudskosten worden gesteld op 5% van de gedane investering.Voor de kosten van elektriciteit wordt uitgegaan van de verwachte ontwikkeling van de day ahead prijs op de APX energiebeurs. Verwacht wordt dat de prijs zich zal ontwikkelen van € 0,025 in 2018 tot € 0,060 in 2032. Aangenomen wordt dat indien de exploitant van een PV‐installatie of windturbine in aanmerking komt voor SDE+ subsidie dat deze regeling van kracht blijft ook als deelektriciteit wordt geleverd aan een P2G installatie.De kosten van CO2 zijn sterk afhankelijk van de schaalgrootte van het project. Bij een kleinschalig project moet de CO2 in pakketten cilinders worden aangeschaft voor circa € 1.000 per ton CO2. Indien er kan worden gekozen voor vervoer per tanktruck en opslag in een tank zijn de kosten van CO2 € 38 ‐ € 58 per ton. Wanneer er sprake is van grootschalig gebruik of als er een CO2‐distributienet in de directe omgeving is kan de CO2 worden afgenomen via een pijpleiding. Deze kosten zijn sterk situatie specifiek.De opbrengst van methaan kan op meerdere manieren worden gewaardeerd. Indien het gas wordt verkocht op de day‐ahead markt dan is de verwachte prijs € 0,016 per kWh in 2018. Als het gas kan worden verkocht als gecertificeerd groengas dan is de verwachte prijs € 0,026 per kWh. Wanneer het gas wordt aangewend voor eigen gebruik dan gelden de bespaarde uitgaven als de opbrengst van het gas. Voor een huishouden is dit € 0,059 per kWh en voor een niet‐huishouden is dit € 0,042 per kWh. Indien de gasprijs eenzelfde tarief zou kennen als de benzineprijs op basis van de energie‐inhoud dangeldt een prijs van € 0,103 per kWh. Tenslotte kan de prijs worden gebaseerd op de bestaande subsidieregelingen met gas als energiedrager. De SDE+ subsidie voor biomassavergassing bedraagt € 0,150 per kWh.Er is alleen sprake van een opbrengst van warmte indien de warmte kan worden geleverd aan een warmtenet in de omgeving. Warmtenetten in Nederland hebben vaak een vaste bron van warmte, er is meestal geen sprake van open access. Een gemiddelde vergoeding voor warmte is € 0,018 per kWh.De industriële markt voor zuurstof lijkt niet geschikt voor een P2G‐project. De volumes op deze markt zijn groot en er is sprake van een continu proces. De markt voor medische zuurstof is mogelijk wel geschikt. Bij succesvolle toetreding zou zuurstof kunnen worden geleverd aan zuurstofdepotsvan leveranciers op deze markt. De prijs wordt geschat op € 0,27 per kg.Uit de analyse van het dedicated model blijkt dat het P2G‐proces niet resulteert in een positieve business case op basis van de opbrengsten van methaan, warmte en zuurstof. Ook wanneer de prijs van methaan wordt gebaseerd op de prijs van benzine blijft de netto contante waarde van hetproject negatief.Het Gas voor eigen gebruik model is gebaseerd op het vinden van een zo groot mogelijk verschil tussen de elektriciteitsprijs en de gasprijs. Door het geproduceerde gas zelf te gebruiken wordt de waarde van het gas gelijk aan de prijs die anders bij inkoop zou moeten worden betaald. Dat is eenprijs inclusief belasting en daardoor is deze relatief hoog. Ook dit model resulteert niet in een positieve business case.In het Windpark Fryslan model staat het besparen van de kosten van het uitbreiden van het hoogspanningsnet centraal. De bouw van het windpark maakt de aanleg van een ontsluitingskabel van Breezanddijk naar Marnezijl en een nieuwe ondergrondse kabel van Marnezijl naar Oudehaske noodzakelijk. De kosten worden geschat op € 2,5 mln per kilometer. De toepassing van P2G ominvesteringen in het hoogspanningsnet te voorkomen resulteert bij Windpark Fryslan niet in een positieve business case. Wel is duidelijk dat als de bespaarde investeringen maar hoog genoeg zijn er op een gegeven moment sprake zal zijn van een positieve business case.Uit de gevoeligheidsanalyse blijkt dat bij een daling van de investeringskosten naar € 1.200 tot € 1.000 per kW en een toekomstige elektriciteitsprijs van hoogstens € 0,04 er sprake is van een positieve business case. De verkoop van gas, warmte, zuurstof en besparingen op infrastructuur moeten dan allemaal een significante bijdrage leveren. Dit betekent dat er een warmtenet in de buurt moet zijn en dat de betreding van de zuurstofmarkt succesvol moet verlopen. Bovendien moet het methaan kunnen worden verkocht voor een prijs die is gebaseerd op de prijs van benzine.Tenslotte wordt In het flexibiliteitsmodel een P2G‐installatie gebruikt om bij lage en negatieve APXprijzen methaan te produceren. Er kan in dit model geld worden verdiend op de onbalansmarkt. Tegen de huidige en verwachte gasprijs en het relatief lage aantal uren dat er kan worden geopereerd op de onbalansmarkt is er geen sprake van een positieve business case.
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
In tijden van toenemende culturele diversiteit en arbeidsonzekerheid hebben jongeren in Nederlandse en Duitse stadswijken grote behoefte aan richting met betrekking tot hun toekomstige leven. Ouders en leraren lijken zelf vaak te worden overweldigd door de snel veranderende wereld waarin ze leven. Naast deze veranderingen neemt het gebruik van sociale media sterk toe, waardoor de al bestaande generatiekloof nog groter wordt. Deze ontwikkelingen hebben grote gevolgen voor de levensloopperspectieven van jongeren en leiden er vaak toe dat ze meer dan ooit richting zoeken bij hun leeftijdgenoten. In plaats van dit te zien als een problematische situatie, is dit project erop gericht de netwerken van jongeren te gebruiken als bron voor verbetering van de stadswijken. Het basisidee is jonge adolescenten (in de leeftijd van 12-14 jaar) te empoweren via bepaalde leeftijdgenoten die al gerespecteerd, verantwoordelijk en stabiel in het leven staan. Deze ‘homies’ (vier Nederlandse en vier Duitse jongeren) worden getraind en begeleid door experts op het gebied van oplossingsgericht denken en inspirerende communicatie. Daarna gaan de homies aan de slag in hun eigen wijk, waar ze drie maanden actief zullen zijn. De meeste communicatie met hun leeftijdgenoten zal verlopen via mobiele communicatie en sociale medianetwerken. In het begeleidende onderzoek wordt een analyse gemaakt van de leefsituatie van jongeren in de geselecteerde wijken voor en na de tussenkomst van de homies. De homies houden zelf een (mobiel) dagboek bij dat inzicht zal bieden in hoe zij zelf de veranderingen bij de jongeren in hun wijk zien.
Many lithographically created optical components, such as photonic crystals, require the creation of periodically repeated structures [1]. The optical properties depend critically on the consistency of the shape and periodicity of the repeated structure. At the same time, the structure and its period may be similar to, or substantially below that of the optical diffraction limit, making inspection with optical microscopy difficult. Inspection tools must be able to scan an entire wafer (300 mm diameter), and identify wafers that fail to meet specifications rapidly. However, high resolution, and high throughput are often difficult to achieve simultaneously, and a compromise must be made. TeraNova is developing an optical inspection tool that can rapidly image features on wafers. Their product relies on (a) knowledge of what the features should be, and (b) a detailed and accurate model of light diffraction from the wafer surface. This combination allows deviations from features to be identified by modifying the model of the surface features until the calculated diffraction pattern matches the observed pattern. This form of microscopy—known as Fourier microscopy—has the potential to be very rapid and highly accurate. However, the solver, which calculates the wafer features from the diffraction pattern, must be very rapid and precise. To achieve this, a hardware solver will be implemented. The hardware solver must be combined with mechatronic tracking of the absolute wafer position, requiring the automatic identification of fiduciary markers. Finally, the problem of computer obsolescence in instrumentation (resulting in security weaknesses) will also be addressed by combining the digital hardware and software into a system-on-a-chip (SoC) to provide a powerful, yet secure operating environment for the microscope software.