Service of SURF
© 2025 SURF
The actual non-sustainable way of living has to be changed fundamentally. Despite all efforts to create a better environment, to improve building designs and to ameliorate existing buildings, often contradictory factors are faced which make it difficult to decide what the best solutions are.The discussion around the Expanded Polystyrene (EPS) house insulation is a typical example how complicated the relation between, energy efficiency, human comfort and health can be. Clearly positive effects like energy efficiency are sometimes associated with e.g. potential flaws in aesthetics caused by growth of algae, poor indoor climate, and health risks which can result in negative responses of residents when implementation of these measures is proposed. Therefore often substances are added which may cause implications with existing regulations if reused again. Smart and highly efficient products are often in contradiction with our aims to create a circular economy due to the fact that different materials are often treated with chemicals or put together in infrangible combinations. The aim of this paper is to highlight the balancing act being faced when trying to introduce new more sustainable materials and methods into the building process. Based on some examples the paper want to demonstrate that principally good intentions like improved energy savings can cause problems in other fields like environmental impact or limited re-use in a circular economy. Basic problems are described and potential approaches to minimize the risk of using building materials which might not meet the requirements for reuse in a second use phase are suggested.
This report is intended to collect, present, and evaluate the various solutions applied in individual operational pilots for their (upscaling and transnational transfer) potential, in terms of opportunities and barriers, over the short and long(er)-term. This is done by identifying the main characteristics of the solutions and sites and the relevant influencing factors at different local (dimension) contexts.The analysis provides insights in barriers but also opportunities and conditions for success across four main dimensions that make up the local context landscape. We consider two main roll-out scenarios:1. Upscaling within the boundaries of the country where the operational pilot (OP) took place2. Transnational Transfer relates to the potential for transferring a (V4)ES solution to any of the other three (project) countriesThere are several aspects within the four main dimensions that are cross-cutting for all four countries, either because EU legislation lies at its roots, or because market conditions are fairly similar for certain influencing factors in those dimension.Ultimately, both Smart Charging and V2X market are still in their relevant infancies. The solutions applied in various SEEV4-City pilots are relatively straightforward and simple in ‘smartness’. This helps the potential for adoption but may not always be the optimal solution yet. The Peak shaving or load/demand shifting solutions are viable options to reduce costs for different stakeholders in the (electricity) supply chain. The market is likely to mature and become much smarter in coming 5 – 10 years. This also includes the evolvement (or spin-offs) of the solutions applied in SEEV4-_City as well. At least in the coming (approximately) 5 years Smart Charging appears to have the better financial business case and potential for large scale roll-out with less (impactful) bottlenecks, but looking at longer term V2X holds its potential to play a significant role in the energy transition.A common denominator as primary barriers relates to existing regulation, standards readiness and limited market availability of either hardware or service offerings.
Aim and method: To examine in obese people the potential effectiveness of a six-week, two times weekly aquajogging program on body composition, fitness, health-related quality of life and exercise beliefs. Fifteen otherwise healthy obese persons participated in a pilot study. Results: Total fat mass and waist circumference decreased 1.4 kg (p = .03) and 3.1 cm (p = .005) respectively. The distance in the Six-Minute Walk Test increased 41 meters (p = .001). Three scales of the Impact of Weight on Quality of Life-Lite questionnaire improved: physical function (p = .008), self-esteem (p = .004), and public distress (p = .04). Increased perceived exercise benefits (p = .02) and decreased embarrassment (p = .03) were observed. Conclusions: Aquajogging was associated with reduced body fat and waist circumference, and improved aerobic fitness and quality of life. These findings suggest the usefulness of conducting a randomized controlled trial with long-term outcome assessments.
To treat microbial infections, antibiotics are life-saving but the increasing antimicrobial resistance is a World-wide problem. Therefore, there is a great need for novel antimicrobial substances. Fruit and flower anthocyanins have been recognized as promising alternatives to traditional antibiotics. How-ever, for future application as innovative alternative antibiotics, the full potential of anthocyanins should be further investigated. The antimicrobial potential of anthocyanin mixtures against different bacterial species has been demonstrated in literature. Preliminary experiments performed by our laboratories, using grape, rose and red cabbage anthocyanins against S. aureus and E. coli confirmed the antimicrobial potential of these substances. Hundreds of different anthocyanin entities have been described. However, which of these entities hold antimicrobial effects is currently unknown. Our preliminary data show that an-thocyanins extracted from grape, rose and red cabbage contain different collections of anthocyanin entities with differential antimicrobial efficacies. Our focus is on the extraction and characterization of anthocyanins from various crop residues. Grape peels are residues in the production of wine, while red rose and tulip leaves are residues in the production of tulip bulbs and regular horticulture. The presence of high-grade substances for pharmacological purposes in these crops may provide an innovative strategy to add value to other-wise invaluable crop residues. This project will be performed by the collaborative effort of our institute together with the Medi-cal Microbiology department of the University Medical Center Groningen (UMCG), 'Wijnstaete', a small-scale wine-producer (Lemelerveld) and Imenz Bioengineering (Groningen), a company that develops processes to improve the production of biobased chemicals from waste products. Within this project, we will focus on the antimicrobial efficacy of anthocyanin-mixtures from sources that are abundantly and locally available as a residual waste product. The project is part of a larger re-search effect to further characterize, modify and study the antimicrobial effects of specific anthocy-anin entities.
An important line of research within the Center of Expertise HAN BioCentre is the development of the nematode Caenorhabditis elegans as an animal testing replacement organism. In the context of this, us and our partners in the research line Elegant! (project number. 2014-01-07PRO) developed reliable test protocols, data analysis strategies and new technology, to determine the expected effects of exposure to specific substances using C. elegans. Two types of effects to be investigated were envisaged, namely: i) testing of possible toxicity of substances to humans; and ii) testing for potential health promotion of substances for humans. An important deliverable was to show that the observed effects in the nematode can indeed be translated into effects in humans. With regard to this aspect, partner Preventimed has conducted research in obesity patients during the past year into the effect of a specific cherry extract that was selected as promising on the basis of the study with C. elegans. This research is currently being completed and a scientific publication will have to be written. The Top Up grant is intended to support the publication of the findings from Elegant! and also to help design experimental protocols that enable students to become acquainted with alternative medical testing systems to reduce the use of laboratory animals during laboratory training.
Multiple sclerosis (MS) is a severe inflammatory condition of the central nervous system (CNS) affecting about 2.5 million people globally. It is more common in females, usually diagnosed in their 30s and 40s, and can shorten life expectancy by 5 to 10 years. While MS is rarely fatal; its effects on a person's life can be profound, which signifies comprehensive management and support. Most studies regarding MS focus on how lymphocytes and other immune cells are involved in the disease. However, little attention has been given to red blood cells (erythrocytes), which might also be important in developing MS. Artificial intelligence (AI) has shown significant potential in medical imaging for analyzing blood cells, enabling accurate and efficient diagnosis of various conditions through automated image analysis. The project aims to implement an AI pipeline based on Deep Learning (DL) algorithms (e.g., Transfer Learning approach) to classify MS and Healthy Blood cells.