Service of SURF
© 2025 SURF
Background: Home-based exercise is an important part of physical therapy treatment for patients with low back pain. However, treatment effectiveness depends heavily on patient adherence to home-based exercise recommendations. Smartphone apps designed to support home-based exercise have the potential to support adherence to exercise recommendations and possibly improve treatment effects. A better understanding of patient perspectives regarding the use of smartphone apps to support home-based exercise during physical therapy treatment can assist physical therapists with optimal use and implementation of these apps in clinical practice. Objective: The aim of this study was to investigate patient perspectives on the acceptability, satisfaction, and performance of a smartphone app to support home-based exercise following recommendations from a physical therapist. Methods: Using an interpretivist phenomenology approach, 9 patients (4 males and 5 females; aged 20-71 years) with nonspecific low back pain recruited from 2 primary care physical therapy practices were interviewed within 2 weeks after treatment ended. An interview guide was used for the interviews to ensure that different aspects of the patients' perspectives were discussed. The Physitrack smartphone app was used to support home-based exercise as part of treatment for all patients. Data were analyzed using the "Framework Method" to assist with interpretation of the data. Results: Data analysis revealed 11 categories distributed among the 3 themes "acceptability," "satisfaction," and "performance." Patients were willing to accept the app as part of treatment when it was easy to use, when it benefited the patient, and when the physical therapist instructed the patient in its use. Satisfaction with the app was determined by users' perceived support from the app when exercising at home and the perceived increase in adherence. The video and text instructions, reminder functions, and self-monitor functions were considered the most important aspects for performance during treatment. The patients did not view the Physitrack app as a replacement for the physical therapist and relied on their therapist for instructions and support when needed. Conclusions: Patients who use an app to support home-based exercise as part of treatment are accepting of the app when it is easy to use, when it benefits the patient, and when the therapist instructs the patient in its use. Physical therapists using an app to support home-based exercise can use the findings from this study to effectively support their patients when exercising at home during treatment.
LINK
Background: Home-based exercise is an important part of physical therapy treatment for patients with low back pain. However, treatment effectiveness depends heavily on patient adherence to home-based exercise recommendations. Smartphone apps designed to support home-based exercise have the potential to support adherence to exercise recommendations and possibly improve treatment effects. A better understanding of patient perspectives regarding the use of smartphone apps to support home-based exercise during physical therapy treatment can assist physical therapists with optimal use and implementation of these apps in clinical practice. Objective: The aim of this study was to investigate patient perspectives on the acceptability, satisfaction, and performance of a smartphone app to support home-based exercise following recommendations from a physical therapist. Methods: Using an interpretivist phenomenology approach, 9 patients (4 males and 5 females; aged 20-71 years) with nonspecific low back pain recruited from 2 primary care physical therapy practices were interviewed within 2 weeks after treatment ended. An interview guide was used for the interviews to ensure that different aspects of the patients’ perspectives were discussed. The Physitrack smartphone app was used to support home-based exercise as part of treatment for all patients. Data were analyzed using the “Framework Method” to assist with interpretation of the data. Results: Data analysis revealed 11 categories distributed among the 3 themes “acceptability,” “satisfaction,” and “performance.” Patients were willing to accept the app as part of treatment when it was easy to use, when it benefited the patient, and when the physical therapist instructed the patient in its use. Satisfaction with the app was determined by users’ perceived support from the app when exercising at home and the perceived increase in adherence. The video and text instructions, reminder functions, and self-monitor functions were considered the most important aspects for performance during treatment. The patients did not view the Physitrack app as a replacement for the physical therapist and relied on their therapist for instructions and support when needed. Conclusions: Patients who use an app to support home-based exercise as part of treatment are accepting of the app when it is easy to use, when it benefits the patient, and when the therapist instructs the patient in its use. Physical therapists using an app to support home-based exercise can use the findings from this study to effectively support their patients when exercising at home during treatment.
MULTIFILE
Rationale, aims and objective: Primary Care Plus (PC+) focuses on the substitution of hospital-based medical care to the primary care setting without moving hospital facilities. The aim of this study was to examine whether population health and experience of care in PC+ could be maintained. Therefore, health-related quality of life (HRQoL) and experienced quality of care from a patient perspective were compared between patients referred to PC+ and to hospital-based outpatient care (HBOC). Methods: This cohort study included patients from a Dutch region, visiting PC+ or HBOC between December 2014 and April 2018. With patient questionnaires (T0, T1 and T2), the HRQoL and experience of care were measured. One-to-two nearest neighbour calliper propensity score matching (PSM) was used to control for potential selection bias. Outcomes were compared using marginal linear models and Pearson chi-square tests. Results: One thousand one hundred thirteen PC+ patients were matched to 606 HBOC patients with well-balanced baseline characteristics (SMDs <0.1). Regarding HRQoL outcomes, no significant interaction terms between time and group were found (P > .05), indicating no difference in HRQoL development between the groups over time. Regarding experienced quality of care, no differences were found between PC+ and HBOC patients. Only travel time was significantly shorter in the HBOC group (P ≤ .001). Conclusion: Results show equal effects on HRQoL outcomes over time between the groups. Regarding experienced quality of care, only differences in travel time were found. Taken as a whole, population health and quality of care were maintained with PC+ and future research should focus more on cost-related outcomes.
The ELSA AI lab Northern Netherlands (ELSA-NN) is committed to the promotion of healthy living, working and ageing. By investigating cultural, ethical, legal, socio-political, and psychological aspects of the use of AI in different decision-makingcontexts and integrating this knowledge into an online ELSA tool, ELSA-NN aims to contribute to knowledge about trustworthy human-centric AI and development and implementation of health technology innovations, including AI, in theNorthern region.The research in ELSA-NN will focus on developing and mapping ELSA knowledge around three general concepts of importance for the development, monitoring and implementation of trustworthy and human-centric AI: availability, use,and performance. These concepts will be explored in two lines of research: 1) use case research investigating the use of different AI applications with different types of data in different decision-making contexts at different time periods duringthe life course, and 2) an exploration among stakeholders in the Northern region of needs, knowledge, (digital) health literacy, attitudes and values concerning the use of AI in decision-making for healthy living, working and ageing. Specificfocus will be on investigating low social economic status (SES) perspectives, since health disparities between high and low SES groups are growing world-wide, including in the Northern region and existing health inequalities may increase with theintroduction and use of innovative health technologies such as AI.ELSA-NN will be integrated within the AI hub Northern-Netherlands, the Health Technology Research & Innovation Cluster (HTRIC) and the Data Science Center in Health (DASH). They offer a solid base and infrastructure for the ELSA-NNconsortium, which will be extended with additional partners, especially patient/citizens, private, governmental and researchrepresentatives, to have a quadruple-helix consortium. ELSA-NN will be set-up as a learning health system in which much attention will be paid to dialogue, communication and education.