Service of SURF
© 2025 SURF
Hoe meer data er beschikbaar komt, des te meer de beslissing verbeterd kan worden. Hoe beter (slimmer) de beslissing wordt gemaakt, des te meer waarde de beslissing heeft voor uw organisatie. Dit wordt het data-netwerk-effect genoemd. Vaak wordt het data-netwerk-effect gerealiseerd door het gebruik van data van onbewuste data-donoren. In dit artikel wordt een ander soort data-donor belicht: de bewuste data-donor.
LINK
Data is widely recognized as a potent catalyst for advancing healthcare effectiveness, increasing worker satisfaction, and mitigating healthcare costs. The ongoing digital transformation within the healthcare sector promises to usher in a new era of flexible patient care, seamless inter-provider communication, and data-informed healthcare practices through the application of data science. However, more often than not data lacks interoperability across different healthcare institutions and are not readily available for analysis. This inability to share data leads to a higher administrative burden for healthcare providers and introduces risks when data is missing or when delays occur. Moreover, medical researchers face similar challenges in accessing medical data due to thedifficulty of extracting data from applications, a lack of standardization, and the required data transformations before it can be used for analysis. To address these complexities, a paradigm shift towards a data-centric application landscape is essential, where data serves as the bedrock of the healthcare infrastructure and is application agnostic. In short, a modern way to think about data in general is to go from an application driven landscape to a data driven landscape, which will allow for better interoperability and innovative healthcare solutions.In the current project the research group Digital Transformation at Hanze University of Applied Sciences works together with industry partners to build an openEHR implementation for a Groningen-based mental healthcare provider.
PURPOSE: Fatigue is a common and potentially disabling symptom in patients with cancer. It can often be effectively reduced by exercise. Yet, effects of exercise interventions might differ across subgroups. We conducted a meta-analysis using individual patient data of randomized controlled trials (RCTs) to investigate moderators of exercise intervention effects on cancer-related fatigue.METHODS: We used individual patient data from 31 exercise RCTs worldwide, representing 4,366 patients, of whom 3,846 had complete fatigue data. We performed a one-step individual patient data meta-analysis, using linear mixed-effect models to analyze the effects of exercise interventions on fatigue (z-score) and to identify demographic, clinical, intervention- and exercise-related moderators. Models were adjusted for baseline fatigue and included a random intercept on study level to account for clustering of patients within studies. We identified potential moderators by testing their interaction with group allocation, using a likelihood ratio test.RESULTS: Exercise interventions had statistically significant beneficial effects on fatigue (β= -0.17 [95% confidence interval (CI) -0.22;-0.12]). There was no evidence of moderation by demographic or clinical characteristics. Supervised exercise interventions had significantly larger effects on fatigue than unsupervised exercise interventions (βdifference= -0.18 [95%CI -0.28;-0.08]). Supervised interventions with a duration ≤12 weeks showed larger effects on fatigue (β= -0.29 [95% CI -0.39;-0.20]) than supervised interventions with a longer duration. CONCLUSIONS: In this individual patient data meta-analysis, we found statistically significant beneficial effects of exercise interventions on fatigue, irrespective of demographic and clinical characteristics. These findings support a role for exercise, preferably supervised exercise interventions, in clinical practice. Reasons for differential effects in duration require further exploration.
Patiëntdata uit vragenlijsten, fysieke testen en ‘wearables’ hebben veel potentie om fysiotherapie-behandelingen te personaliseren (zogeheten ‘datagedragen’ zorg) en gedeelde besluitvorming tussen fysiotherapeut en patiënt te faciliteren. Hiermee kan fysiotherapie mogelijk doelmatiger en effectiever worden. Veel fysiotherapeuten en hun patiënten zien echter nauwelijks meerwaarde in het verzamelen van patiëntdata, maar vooral toegenomen administratieve last. In de bestaande landelijke databases krijgen fysiotherapeuten en hun patiënten de door hen zelf verzamelde patiëntdata via een online dashboard weliswaar teruggekoppeld, maar op een weinig betekenisvolle manier doordat het dashboard primair gericht is op wensen van externe partijen (zoals zorgverzekeraars). Door gebruik te maken van technologische innovaties zoals gepersonaliseerde datavisualisaties op basis van geavanceerde data science analyses kunnen patiëntdata betekenisvoller teruggekoppeld en ingezet worden. Wij zetten technologie dus in om ‘datagedragen’, gepersonaliseerde zorg, in dit geval binnen de fysiotherapie, een stap dichterbij te brengen. De kennis opgedaan in de project is tevens relevant voor andere zorgberoepen. In dit KIEM-project worden eerst wensen van eindgebruikers, bestaande succesvolle datavisualisaties en de hiervoor vereiste data science analyses geïnventariseerd (werkpakket 1: inventarisatie). Op basis hiervan worden meerdere prototypes van inzichtelijke datavisualisaties ontwikkeld (bijvoorbeeld visualisatie van patiëntscores in vergelijking met (beoogde) normscores, of van voorspelling van verwacht herstel op basis van data van vergelijkbare eerdere patiënten). Middels focusgroepinterviews met fysiotherapeuten en patiënten worden hieruit de meest kansrijke (maximaal 5) prototypes geselecteerd. Voor deze geselecteerde prototypes worden vervolgens de vereiste data-analyses ontwikkeld die de datavisualisaties op de dashboards van de landelijke databases mogelijk maken (werkpakket 2: prototypes en data-analyses). In kleine pilots worden deze datavisualisaties door eindgebruikers toegepast in de praktijk om te bepalen of ze daadwerkelijk aan hun wensen voldoen (werkpakket 3: pilots). Uit dit 1-jarige project kan een groot vervolgonderzoek ‘ontkiemen’ naar het effect van betekenisvolle datavisualisaties op de uitkomsten van zorg.
Middels een RAAK-impuls aanvraag wordt beoogd de vertraging van het RAAK-mkb project Praktische Predictie t.g.v. corona in te halen. In het project Praktische Predictie wordt een prototype app ontwikkeld waarmee fysiotherapeuten in een vroeg stadium het chronisch worden van lage rugpijn kunnen voorspellen. Om chronische rugpijn te voorkomen is het belangrijk om in een vroeg stadium de kans hierop in te schatten door psychosociale en mogelijk andere risicofactoren op chronische pijnklachten te herkennen en hierop te interveniëren. Fysiotherapeuten zijn met deze vraag naar het lectoraat Werkzame factoren in Fysiotherapie en Paramedisch Handelen van de Hogeschool van Arnhem en Nijmegen gegaan en dit heeft aanleiding gegeven een onderzoek op te zetten waarin een dergelijke methodiek ontwikkeld wordt. De voorgestelde methodiek betreft een Clinical Decision Support Tool waarmee een geïndividualiseerde kans op chronische rugpijn kan worden bepaald gekoppeld aan een behandeladvies conform de lage rugpijn richtlijn. Hiervoor is eerst geïnventariseerd welke methoden fysiotherapeuten reeds gebruiken en welke in de literatuur worden genoemd. Op basis hiervan is een keuze gemaakt ten aanzien van data die digitaal verzameld worden in minimaal 16 fysiotherapiepraktijken waarbij patiënten gedurende 12 weken gevolgd worden. Met de verzamelde data worden met machine learning algoritmes ontwikkeld voor het berekenen van de kans op chroniciteit. De algoritmes worden ingebouwd in de Clinical Decision Support Tool: een gebruiksvriendelijke prototype app. Bij het ontwikkelen van de tool worden eindgebruikers (fysiotherapeuten en patiënten) intensief betrokken. Op deze manier wordt gegarandeerd dat de tool aansluit bij de wensen en behoeften van de doelgroep. De tool berekent de kans op chroniciteit en geeft een behandeladvies. Daarnaast kan de tool gebruikt worden om patiënten te informeren en te betrekken bij de besluitvorming. Vanwege de coronacrisis is er een aanzienlijke vertraging in de patiënten-instroom (doel n= 300) ontstaan die we met ondersteuning van een RAAK-impuls subsidie willen inlopen.
De gezondheidszorg kampt met personeelstekorten en lange wachtlijsten, wat de zorgkwaliteit voor patiënten ernstig treft. De toenemende vergrijzing van de bevolking en een toenemend tekort aan geschoold personeel verergeren deze problemen. Hierdoor komen zowel zorgverleners als mantelzorgers onder grote druk te staan [1]. In dit project wordt met behulp van AI-onderzoek gedaan naar de haalbaarheid van het automatisch detecteren van de gesteldheid van zorgbehoevenden. Dit biedt mogelijkheden om de druk op zorgverleners en mantelzorgers te verlichten door taken te automatiseren en hen te ondersteunen bij het identificeren van de behoeften van de patiënten. De huidige tekorten in de zorg zijn verontrustend en daarom niet houdbaar voor de kwaliteit van de zorg. Automatisering is daarom essentieel om de zorgkwaliteit te waarborgen. Het consortium bestaat uit zorginstelling De Zijlen, Valtes en het NHL Stenden Lectoraat Computer Vision & Data Science. Vanuit De Zijlen en Valtes is de vraag ontstaan voor de automatische detectie van de gesteldheid van zorgbehoevenden. Gezamenlijk wordt de technische haalbaarheid onderzocht om de business-case te ondersteunen. Daarnaast is het doel van dit project om met een proof-of-concept een breder netwerk van belangenorganisaties, ontwikkelaars en eindgebruikers aan te spreken. Er wordt gewerkt in een multidisciplinair team van studenten, docent-onderzoekers, lectoren, ontwikkelaar en potentiële eindgebruikers.