Service of SURF
© 2025 SURF
Abstract: The typical structure of the healthcare sector involves (specialist) intertwined practices co-occurring in formal or informal networks. These practices must answer to the concerns and needs of all related stakeholders. Multimorbidity and the need to share knowledge for scientific development are among the driving factors for collaboration in healthcare. To establish and keep up a permanent collaborative link, it takes effort and understanding of the network characteristics that must be governed. It is not hard to find practices of Network Governance (NG) in a variety of industries. Still, there is a lack of insight in this subject, including knowledge on how to establish and maintain an effective healthcare network. Consequently, this study's research question is: How is network governance organized in the healthcare sector? A systematic literature study was performed to select 80 NG articles. Based on these publications the characteristics of NG are made explicit. The findings demonstrate that combinations of governance style (relational versus contractual governance) and governance structure (lead versus shared governance) lead to different network dynamics. Furthermore, the results show that in order to comprehend how networks in the healthcare sector emerge and can be regulated, it is vital to understand the current network type. Additionally, it informs us of the governing factors. Zie https://www.hbo-kennisbank.nl/details/sharekit_han:oai:surfsharekit.nl:e4f8fa3a-4af8-42ef-b2dd-c86d77b4cec6
MULTIFILE
The workshop aims to understand how a living lab network structures contribute to system innovation. Living labs as system innovation initiatives can substantially alter established network structures. Moreover, structures can undergo alterations through subtle interventions, with impact on the overall outcomes of living labs. To understand how such change occurs, we develop a multilevel network perspective to study collaborations toward system innovation. We take this perspective to help understand living lab dynamics, drawing on innovative examples and taking into consideration the multilayered structures that the collaboration comprises.
MULTIFILE
Abstract Healthcare organizations operate within a network of governments, insurers, inspection services and other healthcare organizations to provide clients with the best possible care. The parties involved must collaborate and are accountable to each other for the care provided. This has led to a diversity of administrative processes that are supported by a multi-system landscape, resulting in administrative burdens among healthcare professionals. Management methods, such as Enterprise Architecture (EA), should help to develop and manage such landscapes, but they are systematic, while the network of healthcare parties is dynamic. The aim of this research is therefore to develop an EA framework that fits the dynamics of network organizations (such as long-term healthcare). This research proposal outlines the practical and scientific relevance of this research and the proposed method. The current status and next steps are also described.
Logistics represents around 10-11% of global CO2 emissions, around 75% of which come from road freight transport. ‘The European Green Deal’ is calling for drastic CO2 reduction in this sector. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and automatic vehicle technology. Another promising way to reach these environmental ambitions, without excessive technological investments, is the deployment of SUPER ECO COMBI’s (SEC). SEC is the umbrella name for multiple permutations of 32 meter, 70 tons, road-train combinations that can carry the payload-equivalent of 2 normal tractor-semitrailer combinations and even 3 rigid trucks. To fully deploy a SEC into the transport system the compliance with the existing infrastructure network and safety needs to be guaranteed; i.e. to deploy a specific SEC we should be able to determine which SEC-permutation is most optimal on specific routes with respect to regulations (a.o. damage to the pavement/bridges), the dimensions of specific infrastructures (roundabouts, slopes) and safety. The complexity of a SEC compared to a regular truck (double articulation, length) means that traditional optimisation methods are not applicable. The aim of this project is therefore to develop a first methodology enabling the deployment of the optimal SEC permutation. This will help transport companies (KIEM: Ewals) and trailer manufactures (KIEM: Emons) to invest in the most suitable designs for future SEC use. Additionally the methodology will help governments to be able to admit specific SEC’s to specific routes. The knowledge gained in this project will be combined with the knowledge of the broader project ENVELOPE (NWA-IDG). This will be the start of broader research into an overall methodology of deploying optimal vehicle combinations and a new regulatory framework. The knowledge will be used in master courses on vehicle dynamics.
Cycling booms in many Dutch cities. While smart cycling innovations promise to increase cycling’s modal share in the (peri-)urban transport system even further, little is understood of their impact or cost and benefit. The “Smart Cycling Futures (SCF)” program investigates how smart cycling innovations ─ including ICT-enabled cycling innovations, infrastructures, and social innovations like new business models ─ contribute to more resilient and liveable Dutch urban regions. Cycling innovations benefit urban regions in terms of accessibility, equality, health, liveability, and decreasing CO2-emissions when socially well embedded. To facilitate a transition to a sustainable future that respond to pressing issues, the SCF research project runs urban living labs in close collaboration with key stakeholders to develop transdisciplinary insights in the conditions needed for upscaling smart-cycling initiatives. Each living lab involving real-world experiments responds to the urgent challenges that urban regions and their stakeholders face today. The proposed research sub-programs focus on institutional dynamics, entrepreneurial strategies, governance and the socio-spatial conditions for smart cycling. Going beyond analysis, we also assess the economic, social, and spatial impacts of cycling on urban regions. The research program brings together four Dutch regions through academic institutions (three general and one applied-science universities); governmental authorities (urban and regional); and market players (innovative entrepreneurs). Together, they answer practice-based questions in a transdisciplinary and problem-oriented fashion. Research in the four regions generates both region-specific and universally applicable findings. Finally, SCF uses its strong research-practice network around cycling to co-create the research and run an outreach program.