Service of SURF
© 2025 SURF
Artificial intelligence-driven technology increasingly shapes work practices and, accordingly, employees’ opportunities for meaningful work (MW). In our paper, we identify five dimensions of MW: pursuing a purpose, social relationships, exercising skills and self-development, autonomy, self-esteem and recognition. Because MW is an important good, lacking opportunities for MW is a serious disadvantage. Therefore, we need to know to what extent employers have a duty to provide this good to their employees. We hold that employers have a duty of beneficence to design for opportunities for MW when implementing AI-technology in the workplace. We argue that this duty of beneficence is supported by the three major ethical theories, namely, Kantian ethics, consequentialism, and virtue ethics. We defend this duty against two objections, including the view that it is incompatible with the shareholder theory of the firm. We then employ the five dimensions of MW as our analytical lens to investigate how AI-based technological innovation in logistic warehouses has an impact, both positively and negatively, on MW, and illustrate that design for MW is feasible. We further support this practical feasibility with the help of insights from organizational psychology. We end by discussing how AI-based technology has an impact both on meaningful work (often seen as an aspirational goal) and decent work (generally seen as a matter of justice). Accordingly, ethical reflection on meaningful and decent work should become more integrated to do justice to how AI-technology inevitably shapes both simultaneously.
In this document, we provide the methodological background for the Safety atWork project. This document combines several project deliverables as defined inthe overall project plan: validation techniques and methods (D5.1.1), performanceindicators for safety at work (D5.1.2), personal protection equipment methods(D2.1.2), situational awareness methods (D3.1.2), and persuasive technology methods(D4.1.2).
MULTIFILE
This document consists of the research report of Work Package 3 of ProMiMiC's locations Groningen and The Hague. Through the implementation of MiMiC-projects in the form of ‘living labs’, research data was generated leading to insights into (1) concepts of interprofessionality between musicians and healthcare professionals, (2) effects of the MiMiC-practice on nurses’ compassionate skills in contact with patients and (3) the influence of the various contexts on the MiMiC-practice. Given the fact that hospitals are the site of study in ProMiMiC, the research activities of Work Package 3 got highly affected by the COVID-19 pandemic. It led to additional questions and expansion of the MiMiC practice to directions that the consortium hadnot foreseen.
In order to achieve much-needed transitions in energy and health, systemic changes are required that are firmly based on the principles of regard for others and community values, while at the same time operating in market conditions. Social entrepreneurship and community entrepreneurship (SCE) hold the promise to catalyze such transitions, as they combine bottom-up social initiatives with a focus on financially viable business models. SCE requires a facilitating ecosystem in order to be able to fully realize its potential. As yet it is unclear in which way the entrepreneurial ecosystem for social and community entrepreneurship facilitates or hinders the flourishing and scaling of such entrepreneurship. It is also unclear how exactly entrepreneurs and stakeholders influence their ecosystem to become more facilitative. This research programme addresses these questions. Conceptually it integrates entrepreneurial ecosystem frameworks with upcoming theories on civic wealth creation, collaborative governance, participative learning and collective action frameworks.This multidisciplinary research project capitalizes on a unique consortium: the Dutch City Deal ‘Impact Ondernemen’. In this collaborative research, we enhance and expand current data collection efforts and adopt a living-lab setting centered on nine local and regional cases for collaborative learning through experimenting with innovative financial and business models. We develop meaningful, participatory design and evaluation methods and state-of-the-art digital tools to increase the effectiveness of impact measurement and management. Educational modules for professionals are developed to boost the abovementioned transition. The project’s learnings on mechanisms and processes can easily be adapted and translated to a broad range of impact areas.
One of the mission-driven innovation policies of the Netherlands is energy transition which sets, among others, the challenge for a carbon-neutral built environment in 2050. Around 41% of Dutch houses do not yet have a registered energy label, and approximately 31% of the registered houses have label C or lower. This calls for action within the housing renovation industry. Bound to the 70 percent rule, a renovation plan requires full (or at least 70 percent) agreement on the renovation between relevant parties, including residents. In practice, agreement indicators focus mostly on economic and energy aspects. When indicators include people’s needs and preferences, it is expected to speed participation and agreement, increasing residents’ satisfaction and enhances the trust in public institutions. Tsavo was founded in 2015 to organise the sustainability of buildings for ambitious clients. Its sustainability process aims to accelerate renovation by keeping at their core value the social needs and preferences of residents. In this project Tsavo and TU Delft work together to optimise the sustainability process so, it includes everyone’s input and results in a sustainability plan that represents everyone. Tsavo’s role will be key in keeping the balance between both a sustainable renovation service that is cheaper and fast yet also attractive and with an impact on the quality of living. In this project, Tsavo’s sustainable renovation projects will be used to implement methods that focus on increasing participation and residents’ satisfaction. TU Delft will explore principles of attractive, accessible and representative activities to stimulate residents to decide on a renovation plan that is essential and meaningful to all.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.