Service of SURF
© 2025 SURF
In recent decades, technology has influenced various aspects of assessment in mathematics education: (1) supporting the assessment of higher-order thinking skills in mathematics, (2) representing authentic problems from the world around us to use and apply mathematical knowledge and skills, and (3) making the delivery of tests and the analysis of results through psychometric analysis more sophisticated. We argue that these developments are not pushing mathematics education in the same direction, however, which creates tensions. Mathematics education—so essential for educating young people to be creative and problem solving agents in the twenty-first century—is at risk of focusing too much on assessment of lower order goals, such as the reproduction of procedural, calculation based, knowledge and skills. While there is an availability of an increasing amount of sophisticated technology, the related advances in measurement, creation and delivery of automated assessments of mathematics are however being based on sequences of atomised test items. In this article several aspects of the use of technology in the assessment of mathematics education are exemplified and discussed, including in relation to the aforementioned tension. A way forward is suggested by the introduction of a framework for the categorisation of mathematical problem situations with an increasing sophistication of representing the problem situation using various aspects of technology. The framework could be used to reflect on and discuss mathematical assessment tasks, especially in relation to twenty-first century skills.
This paper is a summary paper of the Thematic Working Group (TWG) on Adult Mathematics Education (AME). As the only thematic working group that focuses on adults’ lived experiences of mathematics, the research makes an important contribution to the field of Mathematics Education. The main themes in this group identify that adult numerical behaviour goes beyond the mathematics skills, knowledge, and procedures taught in formal education It is multifaceted, requiring the use of higher order skills of analysis and judgement, applied within a broad array of life’s contexts, experienced through a range of emotions. The research in this group points to the need to raise the profile of research that shows the benefits to adults of learning mathematics but also the long term economic disbenefits in the neglect of teaching and teacher training for this group.
Numeracy and mathematics education in vocational education is under pressure to keep up with the rapid changes in the workplace due to developments in workplace mathematics and the ubiquitous availability of technological tools. Vocational education is a large stream in education for 12- to 20-years-olds in the Netherlands and the numeracy and mathematics curriculum is on the brink of a reform. To assess what is known from research on numeracy in vocational education, we are in the process of conducting a systematic review of the international scientific literature of the past five years to get an overview of the recent developments and to answer research questions on the developments in vocational educational practices. The work is still in progress. We will present preliminary and global results. We see vocational education from the perspective of (young) adults learning mathematics.
LINK