Service of SURF
© 2025 SURF
In dynamic and competitive environment, the importance of innovation is accepted as a necessary ingredients for firms to create value and sustain competitive advantage. However, very little empirical research has specifically addressed to what extent different kinds of innovation rely on specific knowledge management processes and entrepreneurial orientation. The objective of this study is to identify the different types of innovation that are predominant in companies, and how to facilitate different types of innovation activities. A questionnaire survey was conducted and 169 valid replies were received. This research analyzes the relationship among knowledge management processes, as well as entrepreneurial orientation and different types of innovation. The results from an empirical survey study reveal that organizations facilitate different types of innovation (i.e., administrative versus technical innovation) through entrepreneurial orientation and knowledge management process (i.e., knowledge acquisition, knowledge sharing and knowledge application). The results also show that the partial mediating role of knowledge management processes in the relationship between entrepreneurial orientation and different types of innovation.
MULTIFILE
Conceptual metaphors play a vital role in our ability to think in abstract terms like knowledge. Metaphors structure and give meaning to the concept of knowledge. They hide and highlight certain characteristics. The choice of metaphor when reasoning about knowledge is therefore of vital importance for knowledge management (KM). This paper explores the possibility of introducing new knowledge metaphors to the field of KM. Based on a ‘wish list’ of characteristics of knowledge they want to highlight, the authors choose to explore the Knowledge as a Journey metaphor as a new metaphor for knowledge. This results in new insights regarding knowledge sharing, acquisition, retention, and innovation.
Campuses are increasingly positioning themselves as attractive locations forbusinesses. This research studies how this plays out in Amsterdam. We conclude that there is currently much fragmentation in efforts to position the campus landscape as business location, and provide some policy recommendations.
The growing use of digital media has led to a society with plenty of new opportunities for knowledge exchange, communication and entertainment, but also less desirable effects like fake news or cybercrime. Several studies, however, have shown that children are less digital literate than expected. Digital literacy has consequently become a key part within the new national educational policy plans titled Curriculum.nu and the Dutch research and policy agendas. This research project is focused on the role the game sector can play in the development of digital literacy skills of children. In concrete, we want to understand the value of the use of digital literacy related educational games in the context of primary education. Taking into consideration that the childhood process of learning takes place through playing, several studies claim that the introduction of the use of technology at a young age should be done through play. Digital games seem a good fit but are themselves also part of digital media we want young people to be literate about. Furthermore, it needs to be taken into account that digital literacy of teachers can be limited as well. The interactive, structured nature of digital games offers potential here as they are less dependent on the support and guidance of an adult, but at the same time this puts even more emphasis on sensible game design to ensure the desired outcome. The question is, then, if and how digital games are best designed to foster the development of digital literacy skills. By harnessing the potential of educational games, a consortium of knowledge and practice partners aim to show how creating theoretical and practical insights about digital literacy and game design can aid the serious games industry to contribute to the societal challenges concerning contemporary literacy demands.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
The Netherlands is facinggreat challenges to achieve (inter)national climate mitigation objectives inlimited time, budget and space. Drastic innovative measures such as floatingsolar parks are high on political agendas and are entering our water systems.The clear advantages of floating solar (multifunctional use of space) led to afast deployment of renewable energy sources without extensive research toadequately evaluate the impacts on our environment. Acquisition ofresearch data with holistic monitoring methods are urgently needed in order toprevent disinvestments.In this project 10 SMEs with different expertiseand technologies are joining efforts with researchers and four public parties(and 12 indirectly involved) to answer the research question “Which monitoringtechnologies and intelligent data interpretation techniques are requiredto be able to conduct comprehensive, efficient and cost effective monitoring ofthe impacts of floating solar panels in their surroundings?"The outputs after a two-yearproject will play a significant and indispensable role in making Green EnergyResources Greener. Specific output includes a detailed inventory of existingprojects, monitoring method for collection/analysis of datasets(parameters/footage on climate, water quality, ecology) on the effects offloating solar panels on the environment using heterogeneous unmanned robots,workshops with public & private partners and stakeholders,scientific and technical papers and update of national guidelines for optimizingthe relationship between solar panels and the surrounding environment. Projectresults have a global interest and the consortium partners aim at upscaling forthe international market. This project will enrich the involved partners withtheir practical knowledge, and SMEs will be equipped with the new technologiesto be at the forefront and benefit from the increasing floating solar marketopportunities. This project will also make a significant contribution tovarious educational curricula in universities of applied sciences.The Netherlands is facinggreat challenges to achieve (inter)national climate mitigation objectives inlimited time, budget and space. Drastic innovative measures such as floatingsolar parks are high on political agendas and are entering our water systems.The clear advantages of floating solar (multifunctional use of space) led to afast deployment of renewable energy sources without extensive research toadequately evaluate the impacts on our environment. Acquisition ofresearch data with holistic monitoring methods are urgently needed in order toprevent disinvestments.In this project 10 SMEs with different expertiseand technologies are joining efforts with researchers and four public parties(and 12 indirectly involved) to answer the research question “Which monitoringtechnologies and intelligent data interpretation techniques are requiredto be able to conduct comprehensive, efficient and cost effective monitoring ofthe impacts of floating solar panels in their surroundings?"The outputs after a two-yearproject will play a significant and indispensable role in making Green EnergyResources Greener. Specific output includes a detailed inventory of existingprojects, monitoring method for collection/analysis of datasets(parameters/footage on climate, water quality, ecology) on the effects offloating solar panels on the environment using heterogeneous unmanned robots,workshops with public & private partners and stakeholders,scientific and technical papers and update of national guidelines for optimizingthe relationship between solar panels and the surrounding environment. Projectresults have a global interest and the consortium partners aim at upscaling forthe international market. This project will enrich the involved partners withtheir practical knowledge, and SMEs will be equipped with the new technologiesto be at the forefront and benefit from the increasing floating solar marketopportunities. This project will also make a significant contribution tovarious educational curricula in universities of applied sciences.