Service of SURF
© 2025 SURF
Nowadays, digital tools for mathematics education are sophisticated and widely available. These tools offer important opportunities, but also come with constraints. Some tools are hard to tailor by teachers, educational designers and researchers; their functionality has to be taken for granted. Other tools offer many possible educational applications, which require didactical choices. In both cases, one may experience a tension between a teacher’s didactical goals and the tool’s affordances. From the perspective of Realistic Mathematics Education (RME), this challenge concerns both guided reinvention and didactical phenomenology. In this chapter, this dialectic relationship will be addressed through the description of two particular cases of using digital tools in Dutch mathematics education: the introduction of the graphing calculator (GC), and the evolution of the online Digital Mathematics Environment (DME). From these two case descriptions, my conclusion is that students need to develop new techniques for using digital tools; techniques that interact with conceptual understanding. For teachers, it is important to be able to tailor the digital tool to their didactical intentions. From the perspective of RME, I conclude that its match with using digital technology is not self-evident. Guided reinvention may be challenged by the rigid character of the tools, and the phenomena that form the point of departure of the learning of mathematics may change in a technology-rich classroom.
LINK
Expectations are high for digital technologies to address sustainability related challenges. While research into such applications and the twin transformation is growing rapidly, insights in the actual daily practices of digital sustainability within organizations is lacking. This is problematic as the contributions of digital tools to sustainability goals gain shape in organizational practices. To bridge this gap, we develop a theoretical perspective on digital sustainability practices based on practice theory, with an emphasis on the concept of sociomateriality. We argue that connecting meanings related to sustainability with digital technologies is essential to establish beneficial practices. Next, we contend that the meaning of sustainability is contextspecific, which calls for a local meaning making process. Based on our theoretical exploration we develop an empirical research agenda.
MULTIFILE
Living labs are complex multi-stakeholder collaborations that often employ a usercentred and design-driven methodology to foster innovation. Conventional management tools fall short in evaluating them. However, some methods and tools dedicated to living labs' special characteristics and goals have already been developed. Most of them are still in their testing phase. Those tools are not easily accessible and can only be found in extensive research reports, which are difficult to dissect. Therefore, this paper reviews seven evaluation methods and tools specially developed for living labs. Each section of this paper is structured in the following manner: tool’s introduction (1), who uses the tool (2), and how it should be used (3). While the first set of tools, namely “ENoLL 20 Indicators”, “SISCODE Self-assessment”, and “SCIROCCO Exchange Tool” assess a living lab as an organisation and are diving deeper into the organisational activities and the complex context, the second set of methods and tools, “FormIT” and “Living Lab Markers”, evaluate living labs’ methodologies: the process they use to come to innovations. The paper's final section presents “CheRRIes Monitoring and Evaluation Tool” and “TALIA Indicator for Benchmarking Service for Regions”, which assess the regional impact made by living labs. As every living lab is different regarding its maturity (as an organisation and in its methodology) and the scope of impact it wants to make, the most crucial decision when evaluating is to determine the focus of the assessment. This overview allows for a first orientation on worked-out methods and on possible indicators to use. It also concludes that the existing tools are quite managerial in their method and aesthetics and calls for designers and social scientists to develop more playful, engaging and (possibly) learning-oriented tools to evaluate living labs in the future. LinkedIn: https://www.linkedin.com/in/overdiek12345/ https://www.linkedin.com/in/mari-genova-17a727196/?originalSubdomain=nl