Service of SURF
© 2025 SURF
This article deals with automatic object recognition. The goal is that in a certain grey-level image, possibly containing many objects, a certain object can be recognized and localized, based upon its shape. The assumption is that this shape has no special characteristics on which a dedicated recognition algorithm can be based (e.g. if we know that the object is circular, we could use a Hough transform or if we know that it is the only object with grey level 90, we can simply use thresholding). Our starting point is an object with a random shape. The image in which the object is searched is called the Search Image. A well known technique for this is Template Matching, which is described first.
This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with several techniques for object recognition and tracking, and with the guidance of a robot movement by means of computer vision. These experiments involve detection of coloured objects, object detection based on specific features, template matching with automatically generated templates, and interaction of a robot with a physical object that is viewed by a camera mounted on the robot.
The paper introduced an automatic score detection model using object detection techniques. The performance of sevenmodels belonging to two different architectural setups was compared. Models like YOLOv8n, YOLOv8s, YOLOv8m, RetinaNet-50, and RetinaNet-101 are single-shot detectors, while Faster RCNN-50 and Faster RCNN-101 belong to the two-shot detectors category. The dataset was manually captured from the shooting range and expanded by generating more versatile data using Python code. Before the dataset was trained to develop models, it was resized (640x640) and augmented using Roboflow API. The trained models were then assessed on the test dataset, and their performance was compared using matrices like mAP50, mAP50-90, precision, and recall. The results showed that YOLOv8 models can detect multiple objects with good confidence scores.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
The automobile industry is presently going through a rapid transformation towards autonomous driving. Nearly all vehicle manufacturers (such as Mercedes Benz, Tesla, BMW) have commercial products, promising some level of vehicle automation. Even though the safe and reliable introduction of technology depends on the quality standards and certification process, but the focus is primarily on the introduction of (uncertified) technology and not on developing knowledge for certification. Both industry and governments see the lack of knowledge about certification, which can ensure the safety of autonomous technology and thus will guarantee the safety of the driver, passenger, and environment. HAN-AR recognized the lack of knowledge and the need for novel certification methodology for emerging vehicle technology and initiated the PRAUTOCOL project together with its SME partners. The PRAUTOCOL project investigated certification methodology for two use-cases: certification for automated highway overtaking pilot; and certification for automatic valet parking. The PRAUTOCOL research is conducted in two parallel streams: certification of the driver by human factors experts and certification of vehicle by technology experts. The results from both streams are published and presented in respective but limited target groups. Also, an overview of the PRAUTOCOL certification methodology is missing, which can enable its translation to different use-cases of automated technology (other than the used ones). Therefore, to realize a better pass-through of PRAUTOCOL's results to a broader audience, the top-up is required. Firstly, to write a (peer-reviewed) Open Access article, focusing on the application and translation of PRAUTOCOL's methodology to other automated technology use-cases. Secondly, to write a journal article, focusing on the validation of automatic highway overtaking system using naturalistic driving data. Thirdly, to organize a workshop to present PRAUTOCOL's results (valorization) to industrial, research, and government representatives and to discuss a follow-up initiative.
The tourism strategy of the municipality of Amsterdam and the Destination Management Organisation stress the importance of increasing liveabilty and enhancing a sense of unity through, also by connecting with residents. An important area in which they would like to achieve this, is Amsterdam Noord, a neighbourhood that was historically on the fringe of the city but is now appointed as one of the (to be further developed) multi-cores of the city. As such it is facing a rapid transformation on a social, cultural, economic and infrastructural level with an increasing leisure and tourism offer. The idea is to apply principles of regenerative tourism and community capacity building to ensure a sustainable tourism development, although it remains unclear how to do this in in practice. The current PD addresses this issue by investigating possible regenerative urban tourism principles and practices (here: collaborative interventions) that can be designed to increase local community building capacities, using a living lab setting in Amsterdam-Noord. It follows a participatory action research approach where the researcher is part of a living lab team and local eco system. By participating in local meet-ups as well as desk research and (group)interviews a further contextual understanding of how regenerative tourism can be conceptualised in an urban context is gained. Next, workshops, experiments and design-based interventions with local stakeholders will be done to construct different stories of place and new ways of performing tourism. The PD will contribute to knowledge development creating a conceptual framework for regenerative urban tourism. It will also provide academic and practical insights on with regards to stimulating capacity building and how to measure this within a tourism context (also in relation to co-creation and placemaking practices), what potentials can be tapped into and how small-scall collaborative interventions can influence wider system change.