Service of SURF
© 2025 SURF
In November 2019, the High Performance Greenhouse project (HiPerGreen) was nominated for the RAAK Award 2019, as one of the best applied research projects in the Netherlands. This paper discusses the challenges faced, lessons learned and critical factors in making the project into a success.
Friday 23rd March 2018 the first HiPerGreen semi-annual symposium took place at the newly opened World Horti Center in Naaldwijk. Participants in the form of students, professors and company representatives came together to share progress and ideas. Cock Heemskerk, lector Robotica, opened the event with a welcoming speech. Lucien Fesselet, assistant project manager, followed with general updates on the project. Then the floor was given to the students to present their results and progress. Pieter van der Hoeven, associate lector, presented on behalf of four graduating students from the Business, Finance and Law department the assignment on market research. The findings show great potential in business opportunity with the Orchid market. Amora Amir, a potential PhD researcher on big data, gave a speech on the usefulness and the need to understand big amounts of data. Lucien Fesselet performed a live flight demonstration to give an idea of the capabilities and the behaviour of the drone. After the risk analasys the sympoium was concluded with a drink.
This paper describes the concept of a new algorithm to control an Unmanned Aerial System (UAS) for accurate autonomous indoor flight. Inside a greenhouse, Global Positioning System (GPS) signals are not reliable and not accurate enough. As an alternative, Ultra Wide Band (UWB) is used for localization. The noise is compensated by combining the UWB with the delta position signal from a novel optical flow algorithm through a Kalman Filter (KF). The end result is an accurate and stable position signal with low noise and low drift.
The Dutch floriculture is globally leading, and its products, knowledge and skills are important export products. New challenges in the European research agenda include sustainable use of raw materials such as fertilizer, water and energy, and limiting the use of pesticides. Greenhouse growers however have little control over crop growth conditions in the greenhouse at individual plant level. The purpose of this project, ‘HiPerGreen’, is to provide greenhouse owners with new methods to monitor the crop growth conditions in their greenhouse at plant level, compare the measured growth conditions and the measured growth with expected conditions and expected growth, to point out areas with deviations, recommend counter-measures and ultimately to increase their crop yield. The main research question is: How can we gather, process and present greenhouse crop growth parameters over large scale greenhouses in an economical way and ultimately improve crop yield? To provide an answer to this question, a team of university researchers and companies will cooperate in this applied research project to cover several different fields of expertise The application target is floriculture: the production of ornamental pot plants and cut flowers. Participating companies are engaged in the cultivation of pot plans, flowers and suppliers of greenhouse technology. Most of the parties fall in the SME (MKB) category, in line with the RAAK MKB objectives.Finally, the Demokwekerij and Hortipoint (the publisher of the international newsletter on floriculture) are closely involved. The project will develop new knowledge for a smart and rugged data infrastructure for growth monitoring and growth modeling in the greenhouse. In total the project will involve approximately 12 (teacher) researchers from the universities and about 60 students, who will work in the form of internships and undergraduate studies of interesting questions directly from the participating companies.
Centraal in het onderzoeksproject HiPerGreen stond de vraag: Hoe kunnen we met een autonoom vliegende drone ziekten in kassen al zo vroeg scannen dat de gewasuitval substantieel beperkt wordt? Met verschillende prototypes is inmiddels overtuigend aangetoond dat het concept dat hiervoor ontwikkeld is, werkt. De kwekers zijn enthousiast. Frequente of zelfs 24/7 scouting van de gewassen met een drone levert gedetailleerde kaarten op van de locatie van zieke gewassen. Door snelle eliminatie van deze planten wordt verspreiding van de ziekte in een vroeg stadium voorkomen. De kennis die opgedaan is in het succesvolle HiPerGreen project (genomineerd voor de RAAK Award 2019), vertalen we in een nieuwe onderwijs-module (Masterclass) voor HBO en MBO en twee artikelen.
Our mission is to increase the productivity of Dutch greenhouses. Even the most modern greenhouses still suffer from 10% to 25% loss of crop due to pests and diseases (Pimentel, 2012). Our autonomous flying platform can reduce crop loss by regular scouting while avoiding excessive cost of manual labour. With one drone we can scout one hectare of greenhouse per hour, providing detailed information about environmental parameters and crop health, quality and quantity. In comparison traditional manual scouting methods scout a single hectare per day. As a spin-off from RAAK.MKB006.017 HiPerGreen, we are aiming for a fast track solution to a single pest control problem: Fusarium in orchids, and validate a Minimum Viable Product for use in the Greenhouse.