Aim The aim of this study is to gain more insight into child and environmental factors that influence gross motor development (GMD) of healthy infants from birth until reaching the milestone of independent walking, based on longitudinal research. Background A systematic search was conducted using Scopus, PsycINFO, MEDLINE and CINAHL to identify studies from inception to February 2020. Studies that investigated the association between child or environmental factors and infant GMD using longitudinal measurements of infant GMD were eligible. Two independent reviewers extracted key information and assessed risk of bias of the selected studies, using the Quality in Prognostic Studies tool (QUIPS). Strength of evidence (strong, moderate, limited, conflicting and no evidence) for the factors identified was described according to a previously established classification. Results In 36 studies, six children and 11 environmental factors were identified. Five studies were categorized as having low risk of bias. Strong evidence was found for the association between birthweight and GMD in healthy full-term and preterm infants. Moderate evidence was found for associations between gestational age and GMD, and sleeping position and GMD. There was conflicting evidence for associations between twinning and GMD, and breastfeeding and GMD. No evidence was found for an association between maternal postpartum depression and GMD. Evidence for the association of other factors with GMD was classified as ‘limited’ because each of these factors was examined in only one longitudinal study. Conclusion Infant GMD appears associated with two child factors (birthweight and gestational age) and one environmental factor (sleeping position). For the other factors identified in this review, insufficient evidence for an association with GMD was found. For those factors that were examined in only one longitudinal study, and are therefore classified as having limited evidence, more research would be needed to reach a conclusion.
Aim The aim of this study is to gain more insight into child and environmental factors that influence gross motor development (GMD) of healthy infants from birth until reaching the milestone of independent walking, based on longitudinal research. Background A systematic search was conducted using Scopus, PsycINFO, MEDLINE and CINAHL to identify studies from inception to February 2020. Studies that investigated the association between child or environmental factors and infant GMD using longitudinal measurements of infant GMD were eligible. Two independent reviewers extracted key information and assessed risk of bias of the selected studies, using the Quality in Prognostic Studies tool (QUIPS). Strength of evidence (strong, moderate, limited, conflicting and no evidence) for the factors identified was described according to a previously established classification. Results In 36 studies, six children and 11 environmental factors were identified. Five studies were categorized as having low risk of bias. Strong evidence was found for the association between birthweight and GMD in healthy full-term and preterm infants. Moderate evidence was found for associations between gestational age and GMD, and sleeping position and GMD. There was conflicting evidence for associations between twinning and GMD, and breastfeeding and GMD. No evidence was found for an association between maternal postpartum depression and GMD. Evidence for the association of other factors with GMD was classified as ‘limited’ because each of these factors was examined in only one longitudinal study. Conclusion Infant GMD appears associated with two child factors (birthweight and gestational age) and one environmental factor (sleeping position). For the other factors identified in this review, insufficient evidence for an association with GMD was found. For those factors that were examined in only one longitudinal study, and are therefore classified as having limited evidence, more research would be needed to reach a conclusion.
The circular economy (CE) is heralded as reducing material use and emissions while providing more jobs and growth. We explored this narrative in a series of expert workshops, basing ourselves on theories, methods and findings from science fields such as global environmental input-output analysis, business modelling, industrial organisation, innovation sciences and transition studies. Our findings indicate that this dominant narrative suffers from at least three inconvenient truths. First, CE can lead to loss of GDP. Each doubling of product lifetimes will halve the related industrial production, while the required design changes may cost little. Second, the same mechanism can create losses of production jobs. This may not be compensated by extra maintenance, repair or refurbishing activities. Finally, ‘Product-as-a-Service’ business models supported by platform technologies are crucial for a CE transition. But by transforming consumers from owners to users, they lose independence and do not share in any value enhancement of assets (e.g., houses). As shown by Uber and AirBNB, platforms tend to concentrate power and value with providers, dramatically affecting the distribution of wealth. The real win-win potential of circularity is that the same societal welfare may be achieved with less production and fewer working hours, resulting in more leisure time. But it is perfectly possible that powerful platform providers capture most added value and channel that to their elite owners, at the expense of the purchasing power of ordinary people working fewer hours. Similar undesirable distributional effects may occur at the global scale: the service economies in the Global North may benefit from the additional repair and refurbishment activities, while economies in the Global South that are more oriented towards primary production will see these activities shrink. It is essential that CE research comes to grips with such effects. Furthermore, governance approaches mitigating unfair distribution of power and value are hence essential for a successful circularity transition.
LINK