Since an increasing amount of business decision/logic management solutions are utilized, organizations search for guidance to design such solutions. An important aspect of such a solution is the ability to guard the quality of the specified or modified business decisions and underlying business logic to ensure logical soundness. This particular capability is referred to as verification. As an increasing amount of organizations adopt the new Decision Management and Notation (DMN) standard, introduced in September 2015, it is essential that organizations are able to guard the logical soundness of their business decisions and business logic with the help of certain verification capabilities. However, the current knowledge base regarding verification as a capability is not yet researched in relation to the new DMN standard. In this paper, we re-address and - present our earlier work on the identification of 28 verification capabilities applied by the Dutch government [1]. Yet, we extended the previous research with more detailed descriptions of the related literature, findings, and results, which provide a grounded basis from which further, empirical, research on verification capabilities with regards to business decisions and business logic can be explored.
Since an increasing amount of business decision/logic management solutions are utilized, organizations search for guidance to design such solutions. An important aspect of such a solution is the ability to guard the quality of the specified or modified business decisions and underlying business logic to ensure logical soundness. This particular capability is referred to as verification. As an increasing amount of organizations adopt the new Decision Management and Notation (DMN) standard, introduced in September 2015, it is essential that organizations are able to guard the logical soundness of their business decisions and business logic with the help of certain verification capabilities. However, the current knowledge base regarding verification as a capability is not yet researched in relation to the new DMN standard. In this paper, we re-address and - present our earlier work on the identification of 28 verification capabilities applied by the Dutch government [1]. Yet, we extended the previous research with more detailed descriptions of the related literature, findings, and results, which provide a grounded basis from which further, empirical, research on verification capabilities with regards to business decisions and business logic can be explored.
Social media play an important role in the rapidly changing dynamics of government organizations and their interaction with the public. Governments are facing changing demands at organizational level due to the exponential growth of connections, networks involved in social issues and collaboration within and across organizational boundaries (Van Berlo, 2012). Vocal citizens are increasingly expressing their opinions openly and clearly, anywhere and any time. Sometimes they even get involved in (the creation of) government policy. Social media have the capacity to strengthen and facilitate online dialogue in society.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. While extensive attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.