Service of SURF
© 2025 SURF
The Ecocentric and Anthropocentric Attitudes toward the Sustainable Development (EAATSD) scale measures environmental concern in relation to sustainable development. This article will discuss how this scale was tested with three groups of Dutch higher education students. Findings demonstrate that anthropocentric and ecocentric values are independent of the students’ chosen course of study, suggesting that students attracted by the ‘sustainable development’ course title do not necessarily associate ‘sustainability’ with ecocentric aims. This article discusses why ecocentric values are beneficial to the objective of a sustainable society and proposes ways forward in which these values can be enhanced in learners. https://doi.org/10.3390/educsci7030069 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
from the article: Abstract Based on a review of recent literature, this paper addresses the question of how urban planners can steer urban environmental quality, given the fact that it is multidimensional in character, is assessed largely in subjective terms and varies across time. The paper explores three questions that are at the core of planning and designing cities: ‘quality of what?’, ‘quality for whom?’ and ‘quality at what time?’ and illustrates the dilemmas that urban planners face in answering these questions. The three questions provide a novel framework that offers urban planners perspectives for action in finding their way out of the dilemmas identified. Rather than further detailing the exact nature of urban quality, these perspectives call for an approach to urban planning that is integrated, participative and adaptive. ; ; sustainable urban development; trade-offs; quality dimensions
This chapter addresses environmental education as an important subject of anthropological inquiry and demonstrates how ethnographic research can contribute to our understanding of environmental learning both in formal and informal settings. Anthropology of environmental education is rich in ethnographies of indigenous knowledge of plants and animals, as well as emotional and religious engagement with nature passed on through generations. Aside from these ethnographies of informal environmental education, anthropological studies can offer a critical reflection on the formal practice of education, especially as it is linked to development in non-Western countries. Ethnographic and critical studies of environmental education will be discussed as one of the most challenging directions of environmental anthropology of the future. This is an Accepted Manuscript of a book chapter published by Routledge/CRC Press in "Environmental Anthropology: Future Directions" on 7/18/13 available online: https://doi.org/10.4324/9780203403341 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The reclaiming of street spaces for pedestrians during the COVID-19 pandemic, such as on Witte de Withstraat in Rotterdam, appears to have multiple benefits: It allows people to escape the potentially infected indoor air, limits accessibility for cars and reduces emissions. Before ordering their coffee or food, people may want to check one of the many wind and weather apps, such as windy.com: These apps display the air quality at any given time, including, for example, the amount of nitrogen dioxide (NO2), a gas responsible for an increasing number of health issues, particularly respiratory and cardiovascular diseases. Ships and heavy industry in the nearby Port of Rotterdam, Europe’s largest seaport, exacerbate air pollution in the region. Not surprisingly, in 2020 Rotterdam was ranked as one of the unhealthiest cities in the Netherlands, according to research on the health of cities conducted by Arcadis. Reducing air pollution is a key target for the Port Authority and the City of Rotterdam. Missing, however, is widespread awareness among citizens about how air pollution links to socio-spatial development, and thus to the future of the port city cluster of Rotterdam. To encourage awareness and counter the problem of "out of sight - out of mind," filmmaker Entrop&DeZwartFIlms together with ONSTV/NostalgieNet, and Rotterdam Veldakademie, are collaborating with historians of the built environment and computer science and public health from TU Delft and Erasmus University working on a spatial data platform to visualize air pollution dynamics and socio-economic datasets in the Rotterdam region. Following discussion of findings with key stakeholders, we will make a pilot TV-documentary. The documentary, discussed first with Rotterdam citizens, will set the stage for more documentaries on European and international cities, focusing on the health effects—positive and negative—of living and working near ports in the past, present, and future.
Traffic accidents are a severe public health problem worldwide, accounting for approximately 1.35 million deaths annually. Besides the loss of life, the social costs (accidents, congestion, and environmental damage) are significant. In the Netherlands, in 2018, these social costs were approximately € 28 billion, in which traffic accidents alone accounted for € 17 billion. Experts believe that Automated Driving Systems (ADS) can significantly reduce these traffic fatalities and injuries. For this reason, the European Union mandates several ADS in new vehicles from 2022 onwards. However, the utility of ADS still proves to present difficulties, and their acceptance among drivers is generally low.As of now, ADS only supports drivers within their pre-defined safety and comfort margins without considering individual drivers’ preferences, limiting ADS in behaving and interacting naturally with drivers and other road users. Thereby, drivers are susceptible to distraction (when out-of-the-loop), cannot monitor the traffic environment nor supervise the ADS adequately. These aspects induce the gap between drivers and ADS, raising doubts about ADS’ usefulness among drivers and, subsequently, affecting ADS acceptance and usage by drivers.To resolve this issue, the HUBRIS Phase-2 consortium of expert academic and industry partners aims at developing a self-learning high-level control system, namely, Human Counterpart, to bridge the gap between drivers and ADS. The central research question of this research is:How to develop and demonstrate a human counterpart system that can enable socially responsible human-like behaviour for automated driving systems?HUBRIS Phase-2 will result in the development of the human counterpart system to improve the trust and acceptance of drivers regarding ADS. In this RAAK-PRO project, the development of this system is validated in two use-cases:I. Highway: non-professional drivers;II. Distribution Centre: professional drivers.Collaborative partners:Bielefeld University of Applied Sciences, Bricklog B.V., Goudappel B.V., HaskoningDHV Nederland B.V., Rhine-Waal University of Applied Sciences, Rijkswaterstaat, Saxion, Sencure B.V., Siemens Industry Software Netherlands B.V., Smits Opleidingen B.V., Stichting Innovatiecentrum Verkeer en Logistiek, TNO Den Haag, TU Delft, University of Twente, V-Tron B.V., XL Businesspark Twente.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations