Service of SURF
© 2025 SURF
Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and for integrating these programs with the response to environmental signals. In this study, we report on the role of chromatin remodeling in Arabidopsis with respect to the variability of growth and gene expression in relationship to environmental conditions.
BACKGROUND: Prednisolone and other glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive drugs. However, prolonged use at a medium or high dose is hampered by side effects of which the metabolic side effects are most evident. Relatively little is known about their effect on gene-expression in vivo, the effect on cell subpopulations and the relation to the efficacy and side effects of GCs.AIM: To identify and compare prednisolone-induced gene signatures in CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers and to link these signatures to underlying biological pathways involved in metabolic adverse effects.MATERIALS & METHODS: Whole-genome expression profiling was performed on CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers treated with prednisolone. Text-mining analyses was used to link genes to pathways involved in metabolic adverse events.RESULTS: Induction of gene-expression was much stronger in CD4⁺ T lymphocytes than in CD14⁺ monocytes with respect to fold changes, but the number of truly cell-specific genes where a strong prednisolone effect in one cell type was accompanied by a total lack of prednisolone effect in the other cell type, was relatively low. Subsequently, a large set of genes was identified with a strong link to metabolic processes, for some of which the association with GCs is novel.CONCLUSION: The identified gene signatures provide new starting points for further study into GC-induced transcriptional regulation in vivo and the mechanisms underlying GC-mediated metabolic side effects.
Introduction: To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Methods: Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Results: Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects of MPy in literature. Conclusion: Compound keyword fingerprinting based on information retrieved from literature is a powerful approach for compound profiling, allowing evaluation of compound toxicity and analysis of the mode of action. © 2007 Future Medicine Ltd.