Service of SURF
© 2025 SURF
The process of making adaptive and responsive wearables on the scale of the body hasoften been a process where designers use off-the-shelf parts or hand-crafted electronics to fabricategarments. However, recent research has shown the importance of emergence in the process of making.Second Skins is a multistakeholder exploration into the creation of those garments where the designersand engineers work together throughout the design process so that opportunities and challengesemerge with all stakeholders present in the process. This research serves as a case study into thecreation of adaptive caring garments for sustainable wardrobes from a multistakeholder designteam. The team created a garment that can customize the colors, patterns, structures, and otherproperties dynamically. A reflection on the multi-stakeholder process unpacks the process to explorethe challenges and opportunities in adaptable e-textiles.
In the Dutch armed forces clothing sizes are determined using 3D body scans. To evaluate if the predicted size based on the scan analysis matches the best fit, 35 male soldiers fitted a combat jacket and combat pants. It was shown that the predicted jacket size was slightly too large. Therefore, an adjustment was proposed. The predicted and preferred pant size matched rather well. We further investigated discrepancies between predicted and preferred sizes using virtual fitting analysis. Colour maps showing the difference between garment and body circumference illustrated that some soldiers selected a garment size that was obviously too small or too large. In order to minimize the effect of personal preference and maximize standardize ease, we recommend to maintain the current size prediction (with minor corrections for jackets) and use virtual fitting selectively as a control measure.
The article highlights the limitations of speed as a framework for discussing and tackling the environmental challenges of growing clothing volumes or quantities. This argument builds on a series of wardrobe studies mapping the number of clothing items owned, purchased, and disposed of by 25 people during six months, and the reasons behind purchase and disposal. The results indicate that clothing consumption is rarely driven by replacement and that opportunity plays a main role. These characteristics of clothing consumption explain why it takes more than producing long-lasting garments to reduce clothing demand. Rather than delaying the disposal of garments, a more straight-forward focus on reducing production is needed, that is the contribution of a volume-centric approach.
The textile industry faces a significant environmental challenge, annually generating 45 million tons of waste cotton textiles, of which 75% are incinerated or sent to landfills, causing environmental harm. Additionally, 67% of garments are made of plastic fibers, and when disposed of in landfills, 5% of them turn into microplastics that can end up on our plates. Chicfashic proposes an innovative biotech process to address these issues by recovering and recycling plastic fibers while transforming natural fibers into bio-based molecules. These molecules are then used as secondary raw materials to produce bio-based pigments for textiles. The project aims to optimize this process and test it on a larger scale with the assistance of HAN BioCentre. This initiative aligns with Dutch government and EU regulations mandating textile recycling by 2050. The technology used is patent pending and does not involve the use of toxic chemicals or the release of harmful wastewater or fumes, contributing to a shift towards a more circular and sustainable textile industry by reintegrating natural colorants into textile production.
The textile industry contributes over 8% of global greenhouse gas emissions and 20% of the world's wastewater, exceeding emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 resulted in about 270 kg of CO₂ emissions per person, yet only 1% of used clothes are recycled into new garments.To address these challenges, the Textile Hub Groningen (THG) aims to assist small and medium-sized enterprises (SMEs) and stakeholders in forming circular textile value chains, hence reducing waste. Designing circular value chains is complex due to conflicting interests, lack of shared understanding, knowledge gaps regarding circular design principles and emerging technologies, and inadequate tools for collaborative business model development. The potential key stakeholders in the circular textile value chain find it hard to use existing tools and methods for designing these value chains as they are often abstract, not designed to be used in a collaborative setting that fosters collective sense making, immersive learning and experimentation. Consequently, the idea of circular textile value chain remains abstract and hard to realize.Serious games have been used in the past to learn about, simulate and experiment with complex adaptive systems. In this project we aim to answer the following research:How can serious games be leveraged to design circular textile value chains in the region?The expected outcomes of this project are: • Serious game: Facilitates the design of circular textile value chains• Academic Publication: Publish findings to contribute to scholarly discourse.• Future Funding Preparation: Mobilize partners and prepare proposals for follow-up funding to expand the approach to other domains.By leveraging game-based collaborative circular value chain and business model design experiences, this project aims to overcome barriers in designing viable circular value chains in the textile industry.
The textile industry is responsible for over 8% of global greenhouse gas emissions and 20% of the world’s wastewater, surpassing the emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 led to around 270 kg of CO₂ emissions per person, yet only 1% of used clothing is recycled into new garments. The municipality of Groningen manages an estimated 950 kilotons of textile waste but is only able to collect, sort, and recycle 250 kilotons. To address these challenges, Textile Hub Groningen (THG) seeks to support small and medium-sized enterprises (SMEs) and stakeholders in creating circular textile value chains. However, designing circular value chains presents challenges, including conflicting interests, knowledge gaps on circular design principles, and inadequate tools for collaborative business model development. Potential stakeholders often find current tools too abstract and not conducive to collaboration, learning, or experimentation. As a result, circular value chains remain difficult to achieve from the perspective of individual stakeholders. Serious games have been employed to simulate and experiment with complex adaptive systems , . Research shows that well-designed playful learning enhances both learning and motivation, particularly when social elements are integrated . This project aims to answer the following research question: How can serious games be leveraged to design circular textile value chains in the region? The expected outcomes are: 1. Serious Game: Design, test, and deliver a serious game to facilitate the joint design of circular textile value chains. 2. Publications: Extract insights from the game’s design and evaluation, contributing to both academic and practical discussions. 3. Consortium for Follow-up: Mobilize partners and secure funding for future projects in related fields. Through game-based collaborative circular value chain and business model design experiences, this project overcomes barriers in designing viable circular value chains in the textile industry