Service of SURF
© 2025 SURF
Food security depends on a network of actors and elements working together to produce and deliver healthy, sustainable, varied, safe and plentiful food supply to society. The interactions between these actors and elements must be designed, managed and optimized to satisfy demand. In this chapter we introduce Food Supply Chain Optimization and Demand, providing a framework to understand and improve food security from an operational and strategic point of view.
Moral food lab: Transforming the food system with crowd-sourced ethics
LINK
From the article: "This article evaluates the application of blockchain technology to improve organic or fair-trade food traceability from “Farm to Fork” in light of European regulations. This study aims to shed light on the challenges in the organic food chain to overcome, the drivers for blockchain technology, and the challenges in current projects."
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.
Despite their various appealing features, drones also have some undesirable side-effects. One of them is the psychoacoustic effect that originates from their buzzing noise that causes significant noise pollutions. This has an effect on nature (animals run away) and on humans (noise nuisance and thus stress and health problems). In addition, these buzzing noises contribute to alerting criminals when low-flying drones are deployed for safety and security applications. Therefore, there is an urgent demand from SMEs for practical knowledge and technologies that make existing drones silent, which is the main focus of this project. This project contributes directly to the KET Digital Innovations\Robotics and multiple themes of the top sectors: Agriculture, Water and Food, Health & Care and Safety. The main objective of this project is: Investigate the desirability and possibilities of extremely silent drone technologies for agriculture, public space and safety This is an innovative project and there exist no such drone technology that attempts to reduce the noises coming from drones. The knowledge within this project will be converted into the first proof-of-concepts that makes the technology the first Minimum Viable Product suitable for market evaluations. The partners of this project include WhisperUAV, which has designed the first concept of a silent drone. As a fiber-reinforced 3D composite component printer, Fiberneering plays a crucial role in the (further) development of silent drone technologies into testable prototypes. Sorama is involved as an expert company in the context of mapping the sound fields in and around drones. The University of Twente is involved as a consultant and co-developer, and Research group of mechatronics at Saxion is involved as concept developer, system and user requirement verifier and validator. As an unmanned systems innovation cluster, Space53 will be involved as innovation and networking consultant.