Service of SURF
© 2025 SURF
For long flights, the cruise is the longest phase and where the largest amount of fuel is consumed. An in-cruise optimization method has been implemented to calculate the optimal trajectory that reduces the flight cost. A three-dimensional grid has been created, coupling lateral navigation and vertical navigation profiles. With a dynamic analysis of the wind, the aircraft can perform a horizontal deviation or change altitudes via step climbs to reduce fuel consumption. As the number of waypoints and possible step climbs is increased, the number of flight trajectories increases exponentially; thus, a genetic algorithm has been implemented to reduce the total number of calculated trajectories compared to an exhaustive search. The aircraft’s model has been obtained from a performance database, which is currently used in the commercial flight management system studied in this paper. A 5% average flight cost reduction has been obtained.
MULTIFILE
Mexico City airport is located close to the center ofthe city and is Mexico’s busiest airport which is consideredcongested. One of the consequences of airport congestion areflight delays which in turn decrease costumer’s satisfaction. Airtraffic control has been using a ground delay program as a toolfor alleviating the congestion problems, particularly in the mostcongested slots of the airport. This paper uses a model-basedapproach for analyzing the effectiveness of the ground delayprogram and rules. The results show that however the rulesapplied seem efficient, there is still room for improvement inorder to make the traffic management more efficient.
MULTIFILE
Airport management is regularly challenged by the task of assigning flights to existing parking positions in the most efficient way while complying with existing policies, restrictions and capacity limitations. However, such process is frequently disrupted by various events, affecting punctuality of airline operations. This paper describes an innovative approach for obtaining an efficient stand assignment considering the stochastic nature of airport environment. Furthermore, the presented methodology combines benefits of Bayesian modelling and metaheuristics for generating solutions that are more robust to airport flight schedule perturbations. In addition, this paper illustrates that the application of the presented methodology combined with simulation provides a valuable tool for assessing the robustness of the developed stand assignment to flight delays.