Service of SURF
© 2025 SURF
OBJECTIVES: Knee osteoarthritis (OA) is characterized by its heterogeneity, with large differences in clinical characteristics between patients. Therefore, a stratified approach to exercise therapy, whereby patients are allocated to homogeneous subgroups and receive a stratified, subgroup-specific intervention, can be expected to optimize current clinical effects. Recently, we developed and pilot tested a model of stratified exercise therapy based on clinically relevant subgroups of knee OA patients that we previously identified. Based on the promising results, it is timely to evaluate the (cost-)effectiveness of stratified exercise therapy compared with usual, "nonstratified" exercise therapy.METHODS: A pragmatic cluster randomized controlled trial including economic and process evaluation, comparing stratified exercise therapy with usual care by physical therapists (PTs) in primary care, in a total of 408 patients with clinically diagnosed knee OA. Eligible physical therapy practices are randomized in a 1:2 ratio to provide the experimental (in 204 patients) or control intervention (in 204 patients), respectively. The experimental intervention is a model of stratified exercise therapy consisting of (a) a stratification algorithm that allocates patients to a "high muscle strength subgroup," "low muscle strength subgroup," or "obesity subgroup" and (b) subgroup-specific, protocolized exercise therapy (with an additional dietary intervention from a dietician for the obesity subgroup only). The control intervention will be usual best practice by PTs (i.e., nonstratified exercise therapy). Our primary outcome measures are knee pain severity (Numeric Rating Scale) and physical functioning (Knee Injury and Osteoarthritis Outcome Score subscale daily living). Measurements will be performed at baseline, 3-month (primary endpoint), 6-month (questionnaires only), and 12-month follow-up, with an additional cost questionnaire at 9 months. Intention-to-treat, multilevel, regression analysis comparing stratified versus usual care will be performed.CONCLUSION: This study will demonstrate whether stratified care provided by primary care PTs is effective and cost-effective compared with usual best practice from PTs.
Multiple organizations around the world have issued evidence-based exercise guidance for patients with cancer and cancer survivors. Recently, the American College of Sports Medicine has updated its exercise guidance for cancer prevention as well as for the prevention and treatment of a variety of cancer health-related outcomes (eg, fatigue, anxiety, depression, function, and quality of life). Despite these guidelines, the majority of people living with and beyond cancer are not regularly physically active. Among the reasons for this is a lack of clarity on the part of those who work in oncology clinical settings of their role in assessing, advising, and referring patients to exercise. The authors propose using the American College of Sports Medicine's Exercise Is Medicine initiative to address this practice gap. The simple proposal is for clinicians to assess, advise, and refer patients to either home-based or community-based exercise or for further evaluation and intervention in outpatient rehabilitation. To do this will require care coordination with appropriate professionals as well as change in the behaviors of clinicians, patients, and those who deliver the rehabilitation and exercise programming. Behavior change is one of many challenges to enacting the proposed practice changes. Other implementation challenges include capacity for triage and referral, the need for a program registry, costs and compensation, and workforce development. In conclusion, there is a call to action for key stakeholders to create the infrastructure and cultural adaptations needed so that all people living with and beyond cancer can be as active as is possible for them.
OBJECTIVE: To further test the validity and clinical usefulness of the steep ramp test (SRT) in estimating exercise tolerance in cancer survivors by external validation and extension of previously published prediction models for peak oxygen consumption (Vo2peak) and peak power output (Wpeak).DESIGN: Cross-sectional study.SETTING: Multicenter.PARTICIPANTS: Cancer survivors (N=283) in 2 randomized controlled exercise trials.INTERVENTIONS: Not applicable.MAIN OUTCOME MEASURES: Prediction model accuracy was assessed by intraclass correlation coefficients (ICCs) and limits of agreement (LOA). Multiple linear regression was used for model extension. Clinical performance was judged by the percentage of accurate endurance exercise prescriptions.RESULTS: ICCs of SRT-predicted Vo2peak and Wpeak with these values as obtained by the cardiopulmonary exercise test were .61 and .73, respectively, using the previously published prediction models. 95% LOA were ±705mL/min with a bias of 190mL/min for Vo2peak and ±59W with a bias of 5W for Wpeak. Modest improvements were obtained by adding body weight and sex to the regression equation for the prediction of Vo2peak (ICC, .73; 95% LOA, ±608mL/min) and by adding age, height, and sex for the prediction of Wpeak (ICC, .81; 95% LOA, ±48W). Accuracy of endurance exercise prescription improved from 57% accurate prescriptions to 68% accurate prescriptions with the new prediction model for Wpeak.CONCLUSIONS: Predictions of Vo2peak and Wpeak based on the SRT are adequate at the group level, but insufficiently accurate in individual patients. The multivariable prediction model for Wpeak can be used cautiously (eg, supplemented with a Borg score) to aid endurance exercise prescription.