Service of SURF
© 2025 SURF
Presentation given at the online conference Talking the Cyprus Issue Togehter : Maritime Disputes in the Eastern Mediterranean - Session 2
MULTIFILE
In January 2020, Greece, the Republic of Cyprus and Israel signed an agreement to construct the EastMed pipeline, a 1900-kilometer undersea pipeline designed to transport gas from the offshore deposits in the Leviathan field of the southeastern Mediterranean to continental Europe. Designed as Project of Common Interest (PCI) by European Commission since 2013, this pipeline aims to diversify the EU’s energy source, potentially reducing reliance on Russian gas. While progress had stalled, the Russian invasion of Ukraine reignited hopes for its construction. Nonetheless, the United States raised doubts about its viability and distanced itself from what it reportedly labeled a “contentious energy scheme”. Our report aims to assess the prospects of the EastMed pipeline, drawing insights from the energy security scenario analysis by the World Energy Council, Shell, and the Clingendael Institute. Beginning with background information on the project’s geological aspects, EU-driven regulatory framework, key stakeholders, and estimated costs, we’ll craft scenarios around three central storylines: 1) Market and Institutions, focusing on stable geopolitics and regional cooperation, 2) Regions and Empires, emphasizing Geopolitical Tensions, and, 3) Environmental Challenges.
The increasing rate of urbanization along with its socio-environmental impact are major global challenges. Therefore, there is a need to assess the boundaries to growth for the future development of cities by the inclusion of the assessment of the environmental carrying capacity (ECC) into spatial management. The purpose is to assess the resource dependence of a given entity. ECC is usually assessed based on indicators such as the ecological footprint (EF) and biocapacity (BC). EF is a measure of the biologically productive areas demanded by human consumption and waste production. Such areas include the space needed for regenerating food and fibers as well as sequestering the generated pollution, particularly CO2 from the combustion of fossil fuels. BC reflects the biological regeneration potential of a given area to regenerate resources as well to absorb waste. The city level EF assessment has been applied to urban zones across the world, however, there is a noticeable lack of urban EF assessments in Central Eastern Europe. Therefore, the current research is a first estimate of the EF and BC for the city of Wrocław, Poland. This study estimates the Ecological Footprint of Food (EFF) through both a top-down assessment and a hybrid top-down/bottom-up assessment. Thus, this research verifies also if results from hybrid method could be comparable with top-down approach. The bottom-up component of the hybrid analysis calculated the carbon footprint of food using the life cycle assessment (LCA) method. The top-down result ofWrocław’s EFF were 1% greater than the hybrid EFF result, 0.974 and 0.963 gha per person respectively. The result indicated that the EFF exceeded the BC of the city of Wrocław 10-fold. Such assessment support efforts to increase resource efficiency and decrease the risk associated with resources—including food security. Therefore, there is a need to verify if a city is able to satisfy the resource needs of its inhabitants while maintaining the natural capital on which they depend intact. Original article at: https://doi.org/10.3390/resources7030052 © 2018 by the authors. Licensee MDPI.
MULTIFILE