Service of SURF
© 2025 SURF
Different inputs from a multisensory object or event are often integrated into a coherent and unitary percept, despite differences in sensory formats, neural pathways, and processing times of the involved modalities. Presumably, multisensory integration occurs if the cross-modal inputs are presented within a certain window of temporal integration where inputs are perceived as being simultaneous. Here, we examine the role of ongoing neuronal alpha (i.e. 10-Hz) oscillations in multimodal synchrony perception. While EEG was measured, participants performed a simultaneity judgement task with visual stimuli preceding auditory ones. At stimulus onset asynchronies (SOA's) of 160–200 ms, simultaneity judgements were around 50%. For trials with these SOA's, occipital alpha power was smaller preceding correct judgements, and the individual alpha frequency was correlated with the size of the temporal window of integration. In addition, simultaneity judgements were modulated as a function of oscillatory phase at 12.5 Hz, but the latter effect was only marginally significant. These results support the notion that oscillatory neuronal activity in the alpha frequency range, which has been taken to shape perceptual cycles, is instrumental in multisensory perception.
LINK
In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include functional magnetic resonance imaging (fMRI)-based functional and/or effective connectivity, and electroencephalography (EEG)/magnetoencephalography-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between the visual cortex and the rest of the brain. The results show that when alpha power increases, BOLD connectivity between the primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with the anterior/medial thalamus decreases and the ventral–medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. The decreased connectivity within the visual system may indicate an enhanced functional inhibition during a higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between the visual cortex and the other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long-range neural connectivity changes.
LINK
Differences in the oscillatory EEG dynamics of reading open class (OC) and closed class (CC) words have previously been found (Bastiaansen et al., 2005) and are thought to reflect differences in lexical-semantic content between these word classes. In particu-lar, the theta-band (4-7 Hz) seems to play a prominent role in lexical-semantic retrieval. We tested whether this theta effect is robust in an older population of subjects. Additionally, we examined how the context of a word can modulate the oscillatory dynamics underly-ing retrieval for the two different classes of words. Older participants (mean age 55) read words presented in either syntactically correct sentences or in a scrambled order ("scram-bled sentence") while their EEG was recorded. We performed time-frequency analysis to examine how power varied based on the context or class of the word. We observed larger power decreases in the alpha (8-12 Hz) band between 200-700 ms for the OC compared to CC words, but this was true only for the scrambled sentence context. We did not observe differences in theta power between these conditions. Context exerted an effect on the alpha and low beta (13-18 Hz) bands between 0 and 700 ms. These results suggest that the previously observed word class effects on theta power changes in a younger participant sample do not seem to be a robust effect in this older population. Though this is an indi-rect comparison between studies, it may suggest the existence of aging effects on word retrieval dynamics for different populations. Additionally, the interaction between word class and context suggests that word retrieval mechanisms interact with sentence-level comprehension mechanisms in the alpha-band.
MULTIFILE