Service of SURF
© 2025 SURF
This thesis studies the factors that influence physical distribution structure design. Distribution Structure Design (DSD) concerns the spatial layout of the distribution channel as well as the location(s) of logistics facilities. Despite the frequent treatment of DSD in supply chain handbooks, an empirically validated conceptual framework of factors is still lacking. This thesis studies DSD in multiple industry sectors (Fashion, Consumer Electronics, Online Retail) and proposes a conceptual framework.
MULTIFILE
Research statementOur study analyses the factors that drive decision-making on distribution structures, including the layout of distribution channels and the locations of distribution centres. Distribution is a primary firm activity, which strongly influences logistics costs and logistics performance. Distribution is a challenging activity as customer demand is often volatile and unpredictable. Consumers continuously expect higher service related to distribution, e.g., same day delivery and more flexibility in delivery locations. Therefore, it is of strategic importance to shippers and Logistics Service Providers (LSPs) to decide which distribution channel layout to use and, accordingly, plan distribution centre location(s). Distribution structure selection concerns the number and locations of distribution centres, as part of the larger corporate planning process. The main questions we strive to answer in this paper are: (1) what are the main criteria that determine the spatial layout of distribution structures? and (2) how important are these criteria, relative to each other?Methodology The literature on distribution channel design mostly revolves around optimization methods; we are not aware of literature that takes a descriptive approach. We therefore develop a descriptive conceptual model that includes these factors, developed from the contextual literature around this decision. The second part of the study concerns the measurement of the relative importance of these factors. We implemented an elaborate survey and used the Best-Worst Method (BWM) to identify these weights. The survey considers different experts (e.g., logistics managers versus logistics professors) and population segments (e.g., in-house versus outsourced distribution).Data and resultsCurrently we are completing the survey dedicated to evaluating the above factors. We have received sufficient response to estimate a first model. These first estimations already provide useful results. Final estimations will be completed and reported in June 2017. At the I-NUF conference we will be able to present the results and analysis of all factors when comparing respondents and parameters.Preliminary conclusionsBased on literature review, eight main factors – divided into 33 sub factors – are included in our research: 1) Demand factors, 2) Service level factors, 3) Product Characteristics factors, 4) Logistics costs factors, 5) Proximity-related location factors, 6) Accessibility-related location factors, 7) Resources-related location factors and 8) Institutional factors. A number of hypotheses were built from the literature analysis relating, for example, to the relative importance of service- and cost- related factors within different industries. We will revisit these hypotheses and provide the quantitative results of the importance of the individual factors in our paper and at the conference.
Distribution structures and distribution centre (DC) locations are essential for logistics companies to optimise logistics costs and service levels. This paper reviews Supply Chain Management (SCM), Geography and Economic Geographic literature on distribution structure and DC locations decision-making. Two central decision-making elements are discussed: process steps and decision-making factors. Added value of our paper is 1) A literature review 2) Conclusions on the state of current scientific knowledge in three research streams 3) A research agenda. Reviewing literature shows decision-making factors are renowned, however, importance of factors in each process step is unknown. Results also show literature diverges on which process steps logistics companies take (descriptive) or should optimally take (prescriptive) in distribution structure and DC location decision-making. Thus, more research is needed. Developing a descriptive conceptual model and testing on several industry sectors will be valuable to understand differences on distribution structure and DC location decision-making.
At gas stations, tetrahydrothiophene (THT) is added to odorless biogas (and natural gas) for quick leak detection through its distinctive smell. However, for low bio and natural gas velocities, evaporation is not complete and the odorization process is compromised, causing odor fluctuations and undesired liquid accumulation on the pipeline. Inefficient odorization not only endangers the safety and well-being of gas users, but also increases gas distribution companies OPEX. To enhance THT evaporation during low bio and natural gas flow, an alternative approach involves improve the currently used atomization process. Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology that uses strong electric fields to create nano and micro droplets with a narrow size distribution. This relatively new atomization technology can improve the odorization process as it can manipulate droplet sizes according to the natural and bio gas flow. BiomEHD aims to develop, manufacture, and test an EHDA odorization system for applying THT in biogas odorization.
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.
The European eel (Anguilla anguilla) is a delicacy fish and an integral part of the Dutch culinary history. However, the stock of adult eel has decreased significantly due to a precipitous recruitment of glass eel fall. This relates to multiple factors including obstacles in migration pathways, loss of habitat and chemical pollution. Consequently, Anguilla anguilla has become a critically endangered species and is protected under European legislation. One possible solution, explored on laboratory scale, is the captive reproduction of eels and growth of glass eel in aquaculture. A big challenge of this technique is the limiting aspect of possible nutrients for the eels in the larval stage, as the diet must be delivered in micrometric capsules (< 20 µm) with a high protein content. Such diets are not yet available on the market. Electrohydrodynamic atomization (EHDA) is a novel option to prepare a micro-diet suitable for eel larvae. EHDA is especially interesting for its narrow size distribution capabilities and for applications which require submicrometric sizes. This project aims to evaluate the use of EHDA to produce high protein content micrometric size capsules for feeding larval eels. If successful, this would assist in the captivity production of glass eel and to make the eel culture independent of wild catches, restoring the culinary market. The project will be conducted in two phases. Firstly, tests will be conducted to evaluate the necessary conditions of the capsules using EHDA. Subsequently, the obtained capsules will be tested as feed for eel larvae. The main objective is to favour the development of a more sustainable eel culture, regarding the possibilities of investigating the current fish in natura option and exchanging it for a captivity one.