Service of SURF
© 2025 SURF
This thesis studies the factors that influence physical distribution structure design. Distribution Structure Design (DSD) concerns the spatial layout of the distribution channel as well as the location(s) of logistics facilities. Despite the frequent treatment of DSD in supply chain handbooks, an empirically validated conceptual framework of factors is still lacking. This thesis studies DSD in multiple industry sectors (Fashion, Consumer Electronics, Online Retail) and proposes a conceptual framework.
MULTIFILE
Distribution structures, as studied in this paper, involve the spatial layout of the freight transport and storage system used to move goods between production and consumption locations. Decisions on this layout are important to companies as they allow them to balance customer service levels and logistics costs. Until now there has been very little descriptive research into the factors that drive decisions about these structures. Moreover, the literature on the topic is scattered across various research streams. In this paper we review and consolidate this literature, with the aim to arrive at a comprehensive list of factors. Three relevant research streams were identified: Supply Chain Management (SCM), Transportation and Geography. The SCM and Transportation literature mostly focus on distribution structure including distribution centre (DC) location selection from a viewpoint of service level and logistics costs factors. The Geography literature focuses on spatial DC location decisions and resulting patterns mostly explained by location factors such as labour and land availability. Our review indicates that the main factors that drive decision-making are “demand level”, “service level”, “product characteristics”, “logistics costs”, “labour and land”, “accessibility” and “contextual factors”. The main trade-off influencing distribution structure selection is “service level” versus “logistics costs”. Together, the research streams provide a rich picture of the factors that drive distribution structure including DC location selection. We conclude with a framework that shows the relative position of these factors. Future work can focus on completing the framework by detailing out the sub factors and empirically testing the direction and strength of relationships. Cooperation between the three research streams will be useful to further extend and operationalize the framework.
The design of a spatial distribution structure is of strategic importance for companies, to meet required customer service levels and to keep logistics costs as low as possible. Spatial distribution structure decisions concern distribution channel layout – i.e. the spatial layout of the transport and storage system – as well as distribution centre location(s). This paper examines the importance of seven main factors and 33 sub-factors that determine these decisions. The Best-Worst Method (BWM) was used to identify the factor weights, with pairwise comparison data being collected through a survey. The results indicate that the main factor is logistics costs. Logistics experts and decision makers respectively identify customer demand and service level as second most important factor. Important sub-factors are demand volatility, delivery time and perishability. This is the first study that quantifies the weights of the factors behind spatial distribution structure decisions. The factors and weights facilitate managerial decision-making with regard to spatial distribution structures for companies that ship a broad range of products with different characteristics. Public policy-makers can use the results to support the development of land use plans that provide facilities and services for a mix of industries.
In the autumn of 2020, an autonomous and electric delivery robot was deployed on the BUas campus for the distribution of goods. In addition to the actual field test of the robot, we conducted research into various aspects of autonomous delivery robots. In this contribution we discuss the test with the autonomous delivery robot itself, the adjustments we had to make because the campus was very quiet due to COVID-19 and therefore there was less to transport for the robot, and the perception of people. with regard to the delivery robot, on the possible future areas of application and on the learning experiences we have gained in the tests.