Service of SURF
© 2025 SURF
The seismic assessment of unreinforced masonry (URM) buildings with cavity walls is of high relevance in regions such as in Central and Northern Europe, Australia, New Zealand and China because of the characteristics of the masonry building stock. A cavity wall consists of two separate parallel walls usually connected by metal ties. Cavity walls are particularly vulnerable to earthquakes, as the out-of-plane capacity of each individual leaf is significantly smaller than the one of an equivalent solid wall. This paper presents the results of an experimental campaign conducted by the authors on metal wall tie connections and proposes a mechanical model to predict the cyclic behaviour of these connections. The model has been calibrated by us- ing the experimental results in terms of observed failure modes and force-displacement responses. Results are also presented in statistical format.
The assessment of the out-of-plane response of unreinforced masonry (URM) buildings with cavity walls has been a popular topic in regions such as Central and Northern Europe, Australia, New Zealand, China and several other countries.Cavity walls are particularly vulnerable as the out-of-plane capacity of each individual leaf is significantly smaller than the one of a solid wall. In the Netherlands, cavity walls are characterized by an inner load-bearing leaf of calcium silicate bricks, and by an outer veneer of clay bricks that has only aesthetic and insulation functions. The two leaves are typically connected by means of metallic ties. This paper utilizes the results of an experimental campaign conducted by the authors to calibrate a hysteretic model that represents the axial cyclic response of cavity wall tie connections. The proposednumerical model uses zero-length elements implemented in OpenSees with the Pinching4 constitutive model to account for the compression-tension cyclic behaviour of the ties. The numerical model is able to capture important aspects of the tie response such as the strength degradation, the unloading stiffness degradation and the pinching behaviour. The numerical modelling approach in this paper can be easily adopted by practitioner engineers who aim to model the wall ties more accurately when assessing the structures against earthquakes.
In recent years, the number of human-induced earthquakes in Groningen, a large gas field in the north of the Netherlands, has increased. The majority of the buildings are built by using unreinforced masonry (URM), most of which consists of cavity (i.e. two-leaf) walls, and were not designed to withstand earthquakes. Efforts to define, test and standardize the metal ties, which do play an important role, are valuable also from the wider construction industry point of view. The presented study exhibits findings on the behavior of the metal tie connections between the masonry leaves often used in Dutch construction practice, but also elsewhere around the world. An experimental campaign has been carried out at Delft University of Technology to provide a complete characterization of the axial behavior of traditional connections in cavity walls. A large number of variations was considered in this research: two embedment lengths, four pre-compression levels, two different tie geometries, and five different testing protocols, including monotonic and cyclic loading. The experimental results showed that the capacity of the connection was strongly influenced by the embedment length and the geometry of the tie, whereas the applied pre-compression and the loading rate did not have a significant influence.
A series of tests performed on as-built and strengthened timber joist-masonry-wall specimens. The test aims at providing a complete characterization of the behaviour of the timber-joist connections under axial cyclic loading. The obtained results will be used as inputs to calibrate numerical models to simulate the connection between the cavity wall and timber joist.
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection. The validated product of the experiment will be tested on the monument of Fraeylemaborg.
In recent years, human-induced seismicity in the northern part of the Netherlands increased rendering the seismic response of unreinforced masonry (URM) structures critical. Majority of the existing buildings in the Netherlands are URM, which are not designed to withstand earthquakes. This issue motivates engineering and construction companies in the region to research on the seismic assessment of the existing structures.The companies working in the structural engineering field in the region were forced to adapt very quickly to the earthquake related problems, such as strengthening of existing buildings after earthquake. Such solutions are of prime importance for the Groningen region due to the extent of the earthquake problems and need for strengthening the houses. The research published in the literature show that the connections play an important role in seismic resistant of the houses. Fixing or improving the poor wall-to-wall or floor-to-wall connections may have a large positive impact on the overall seismic behaviour. Some strengthening solutions are already provided by SMEs, and an extensive experimental campaign was carried out at TU Delft on retrofitted connections. In this project, a new experiment will be run on a large shake-table, unique in the Netherlands, that can simulate earthquake vibrations. These tests, together with the previous experience, will complement the overall knowledge on the strengthening solutions and their performance under real-time actual earthquake vibrations.