Service of SURF
© 2025 SURF
Efforts to create age-friendly cities progressively intersect with goals for environmental sustainability. The older people’s beliefs, behaviours and financial aspects regarding environmental sustainability in their lives are an understudied topic and not well understood. Therefore, a representative survey was conducted using the psychometrically sound and comprehensive SustainABLE-16 Questionnaire. A total of 388 respondents, who were community-dwelling older people in The Hague, filled out the survey completely. Overall, the mean scores on the SustainABLE-16 for finance- and environment-driven pro-environmental behaviours, beliefs and the financial position among older people were positive for all districts of The Hague. Using the outcomes of the survey, a total of six unique typologies were identified through a two-step process combining hierarchical and k-means cluster analyses. These six typologies are 1 the staunch non-believers, 2 the finance-driven non-believers, 3 the everyday individuals, 4 belief-driven people with limited financial resources, 5 believing non-responders, 6 the affluent and engaging people. These six typologies each require different approaches from policymakers. Sustainabilityrelated policies should ideally focus on groups with high scores for pro-environmental behaviours but who have shortcomings in knowledge how to improve one’s everyday lifestyle and groups who lack the necessary financial means to live a more sustainable life.
MULTIFILE
De klimaatdoelstelling van de nederlandse overheid is om in 2020 de co2 uitstoot met 30 te reduceren ten opzichte van 1990. Diverse scenario’s gaan uit van een reductie van de co2 met 50% in 2050 [o.a. Uyterlinde 2007]. Voor 2020 wil men de doelstelling bereiken door inzet van 20% duurzame energie en een aanzienlijke efficiencyverbetering in het energiegebruik. Maar als we in 2050 de co2 emissie met 50% verminderd willen hebben, zullen ook andere maatregelen moeten worden genomen. Hierbij wordt onder andere gedacht aan afvang van co2 bij de industrie en elektriciteitsopwekking, en ondergrondse opslag van het afgevangen co2. Ook het wegtransport zal veel efficiënter moeten gaan plaatsvinden. Een belangrijk middel hierbij is om auto’s te laten rijden op een waterstof aangedreven brandstofcel. Alhoewel waterstof zelf geen duurzame brandstof is, kan het wel duurzaam geproduceerd worden met windenergie of uit fossiele energie met afvang van co2. Tot nu toe is er weinig aandacht geweest voor de veiligheidsaspecten van de energietransitiemaatregelen. Als het co2 tijdens het transport van de afvanglocatie naar de ondergrondse opslag door een ongeval vrij zou komen, kan dit gevolgen hebben voor de gezondheid van mensen die in de nabijheid van de transportroute wonen of werken. Het tanken en het vervoeren van het zeer brandbare waterstof (bij een druk van 700 bar), zal zodanig moeten plaatsvinden dat de bestuurder en passagiers even veilig kunnen rijden als in een auto met conventionele brandstoffen.
MULTIFILE
Kunstmest voor de velden en brandstof voor landbouwvoertuigen zijn belangrijke kostenposten voor de landbouw. Kunstmest en dieselbrandstof zijn energie-intensieve producten en daarmee ook een belangrijke bron van CO2 emissies vanuit de landbouw. Technologie voor hernieuwbare energie zoals zonne- en wind energie wordt steeds goedkoper waardoor het rendabeler wordt deze technologie ook te gebruiken. Terug leveren van geproduceerde hernieuwbare elektriciteit aan het elektriciteitsnet is echter niet altijd voordelig. De hernieuwbare energie moet hier concurreren met gesubsidieerde fossiele elektriciteit opgewekt met kolen, gas en kerncentrales. Kleinschalige decentrale productie op het boerenbedrijf van zowel kunstmest als transportbrandstof met behulp van hernieuwbare energie levert de boer en zijn omgeving direct voordeel op:Inkoopkosten voor deze producten worden lagerVermindert de CO2-emissie van de landbouw aanzienlijk, de carbo-footprint wordt verminderdRendement op hernieuwbare energie technologie wordt hogerAmmoniak (NH3) is zowel grondstof voor kunstmest als brandstof voor motoren. Ammoniak kan diesel voor meer dan 90% vervangen in bestaande dieselmotoren. Daarmee is ammoniak een uitstekende vervanger voor diesel in het landbouw en wegverkeer. Ammoniak is ook grondstof voor waterstof (H2) in waterstofmotoren. De technologie om ammoniak te maken is gebaseerd op het Haber-Bosch proces uit het begin van de vorige eeuw. Deze technologie vraagt veel energie voor het creëren van de hoge druk en de hoge temperaturen. Daarom is het voordelig het Haber-Bosch proces in grote installaties uit te voeren.Nieuwe brandstofcel-technologie maakt het mogelijk het Haber-Bosch proces (elektro-katalytisch) op kleine schaal uit te voeren. Het Kiemkracht concept Greenfertilizer onderzoekt de mogelijkheden van deze technologie voor ammoniak productie en benutting op het eigen boerenbedrijf.Het onderzoek is uitgevoerd door TU-Delft en Hanzehogeschool. Het doel was een opgeschaald ammonia elektrolyse synthese proces te ontwikkelen waar een eerste schaal-sprong gemaakt zou worden.Het elektrochemisch ammonia synthese proces is gebaseerd op zuurstofgeleidende elektroden, (proces figuur3. zie onder). Het voordeel van deze zuurstofgeleidende electroden boven proton geleidende electroden is dat er met omgevingslucht gewerkt kan worden in plaats van met stoom. Stoom maakt technologische ontwikkeling van het proces gecompliceerder. Experimenteel en theoretisch onderzoek van TU-Delft laat zien dat met deze elektroden ammonia te produceren is. TU-Delft heeft met zuurstof geleidende electroden ammonia productiesnelheden behaald van 1,84x 10-10 mol s-1 cm-2 bij 650oC. Deze snelheden zijn een factor 100-1000 hoger dan tot nu toe gerapporteerd in literatuur (Kyriakou et al 2017). Simulatie-studies van TU-Delft laten zien dat het ammonia synthese proces met een factor 100-1000 versneld kan worden door het proces onder druk te brengen bij een temperatuur van 400-500C. Op basis van deze simulaties is een ontwerp gemaakt en uitgevoerd voor een “hoge-druk electrolyse reactor”. Technische complicaties met deze hoge druk elektrolyse reactor maakte het onmogelijk betrouwbare resultaten te verkrijgen. Met name gas lekkages bij hoge temperaturen maakten het onmogelijk ammonia massabalansen op te stellen. Bovendien was ammonia productie niet aan te tonen. Hiermee zijn de simulatie voorspellingen niet bevestigd en blijft het onduidelijk of de onderliggende hypothesen correct zijn. De Hanzehogeschool heeft onderzoek uitgevoerd naar het concentreren van ammonia voor toepassing als vloeibare kunstmest. Uitgangspunt hierbij waren de ammonia productieniveau van de experimentele opzet en de voorspelde gesimuleerde opzet. Met de juiste technologie is het mogelijk de ammonia te concentreren voor verdere verwerking als kunstmest. Echter dit proces is economisch rendabel bij een ammonia concentratie in de uitstroom van de elektrolyse reactor die een factor 1000 hoger is dan tot nu toe is gemeten. Het feit dat de TU-Delft er niet in is geslaagd een kleine schaalsprong (factor 10) te maken met de drukreactor betekent dat commerciële toepassing van dit proces voorlopig nog niet aan de orde is. Achteraf gezien was het wellicht beter geweest de keuze te maken voor de proton geleidende electroden die bij lagere temperaturen werkzaam zijn, hier is een schaalsprong van een factor 100 ten opzichte van de recent gerapporteerde ammonia synthese snelheden. Een recente review door Kyriakou et al 2017 geeft als aanbeveling onderzoek te verrichten naar verbeterde elektrodematerialen en geleidende elektrolyten in de reactorcellen. Uiteindelijk zal het elektrochemisch ammonia synthese proces er komen vanwege de vele voordelen die het beidt. Processen moeten met een factor 100-1000 verbeterd worden eer het proces economisch rendabel is. Op dit moment is het nog niet te voospellen wanneer dit moment er is.