Service of SURF
© 2025 SURF
Dissertatie met als onderwerp het ontwerp en evaluatie van de Hogere Beroepsopleidding Orthopedische Technologie in Nederland. In deze dissertatie wordt naast het ontwerp van de opleiding ingegaan op een vergelijking die is gemaakt met andere opleidingen op het gebied van hoger orthopedisch technologisch onderwijs in de wereld.
Ankle Foot Orthoses (AFOs) to promote walking ability are a common treatment in patients with neurological or muscular diseases. However, guidelines on the prescription of AFOs are currently based on a low level of evidence regarding their efficacy. Recent studies aiming to demonstrate the efficacy of wearing an AFO in respect to walking ability are not always conclusive. In this paper it is argued to recognize two levels of evidence related to the ICF levels. Activity level evidence expresses the gain in walking ability for the patient, while mechanical evidence expresses the correct functioning of the AFO. Used in combination for the purpose of evaluating the efficacy of orthotic treatment, a conjunct improvement at both levels reinforces the treatment algorithm that is used. Conversely, conflicting outcomes will challenge current treatment algorithms and the supposed working mechanism of the AFO. A treatment algorithm must use relevant information as an input, derived from measurements with a high precision. Its result will be a specific AFO that matches the patient's needs, specified by the mechanical characterization of the AFO footwear combination. It is concluded that research on the efficacy of AFOs should use parameters from two levels of evidence, to prove the efficacy of a treatment algorithm, i.e., how to prescribe a well-matched AFO.
In OE a more holistic approach in the design process is needed. This requires a shift of thinking from just the OD to overall goal setting: meeting the functional needs of the patients. This can only be achieved by upgrading the traditional orthopaedic engineering educational programs. Analysing the patient's problem, explicitly formulate OD requirements, the design, the manufacturing, tuning and evaluation must become seamlessly integrated parts of OE education.