Service of SURF
© 2025 SURF
In this thesis several studies are presented that have targeted decision making about case management plans in probation. In a case management plan probation officers describe the goals and interventions that should help offenders stop reoffending, and the specific measures necessary to reduce acute risks of recidivism and harm. Such a plan is embedded in a judicial framework, a sanction or advice about the sanction in which these interventions and measures should be executed. The topic of this thesis is the use of structured decision support, and the question is if this can improve decision making about case management plans in probation and subsequently improve the effectiveness of offender supervision. In this chapter we first sketch why structured decision making was introduced in the Dutch probation services. Next we describe the instrument for risk and needs assessment as well as the procedure to develop case management plans that are used by the Dutch probation services and that are investigated in this thesis. Then we describe the setting of the studies and the research questions, and we conclude with an overview of this thesis.
In opdracht van de VNG is onderzoek verricht naar de invloed van digitalisering en technologische ontwikkelingen op de juridische functie van gemeenten en de vraag op welke wijze hierop adequaat kan worden ingespeeld. Dit thema is zeer actueel. Technologische ontwikkelingen in de maatschappij stellen gemeenten voor (beleidsmatige) uitdagingen. Digitalisering biedt veel kansen om gemeentelijke dienstverlening en besluitvorming te verbeteren, maar kent tegelijkertijd risico’s. Door de recente toeslagenaffaire staan kwaliteit, rechtvaardigheid en transparantie van overheidsbesluitvorming terecht in het middelpunt van de belangstelling. De inzet van technologie en algoritmes speelt bij dienstverlening en besluitvorming een steeds belangrijkere rol. Dit geldt ook bij gemeentelijke besluitvorming. De uitdaging is om de kansen die technologie biedt te benutten, maar tegelijkertijd juridische kwaliteit te borgen en de menselijke maat te behouden.
Project BAMBAM, BAby Motor development monitored By A Multisensor wearable, richt zich op het begin, namelijk bij de zorg voor kinderen van 0-2 jaar. In het bijzonder op het optimaliseren van de ontwikkeling van de motoriek wanneer dit niet vanzelf gaat. Kinderfysiotherapeuten begeleiden veel baby’s waarbij er zorgen zijn over de motorische ontwikkeling. Een goed ontwikkelde motoriek is de basis voor andere ontwikkelingsdomeinen,en een voorwaarde voor een fysiek actieve leefstijl op latere leeftijd. Het inzetten van technologie bij het analyseren van bewegingsproblemen bij het jonge kind kan een waardevolle aanvulling zijn voor de kinderfysiotherapeut, die nu eigen observaties gebruikt. Op dit moment is er nog geen geschikt systeem voor het observeren van de motorische ontwikkeling voor kinderfysiotherapeuten. Daarom werken we in project BAMBAM aan een meetinstrument voor het objectiveren van bewegingsgedrag van baby’s, dat verantwoord ingezet kan worden in de kinderfysiotherapeutische praktijk en interventiestudies. Uitgangspunt is een bestaande smartsuit, een ‘slimme' romper, met sensortechnologie en Artificiële Intelligentie die doorontwikkeld wordt in co creatie met kinderfysiotherapeuten, ouders en experts. Ook onderzoeken we hoe de uitkomsten van het systeem waarde toevoegen als beslissingsondersteuning voor de kinderfysiotherapeut. Hierbij richten we ons vooral op de bewegingsparameters die belangrijk zijn voor het kinderfysiotherapeutisch onderzoek en behandeling en hoe we die duidelijk kunnen weergeven. Het systeem moet valide en betrouwbare metingen verzorgen in de thuissituatie voor de kinderfysiotherapeut in praktijk en ziekenhuis. De impact van deze toepassing op ouders en kinderfysiotherapeuten is een belangrijk onderdeel bij het ontwikkelen van deze technologie, zodat het op een verantwoorde manier gebruikt kan worden. De gezondheidszorg vraagt om evidence-based diagnostiek en interventies. Met de schaarste van zorg, wordt het zorgvuldig signaleren van de baby’s die de zorg echt nodig hebben steeds belangrijker, net als de inzet van effectieve interventies. Technologie kan bijdragen aan toegankelijkheid en duurzame borging hiervan.
De bereikbaarheid en beschikbaarheid van de ambulancezorg staat onder druk. Een belangrijke ingangsklacht van de mensen die 112 bellen is een kortdurende bewusteloosheid. Als deze bewusteloosheid het gevolg is van een verminderde bloedtoevoer in de hersenen noemen we het syncope. Syncope kan onschuldig of ernstig van aard zijn. De risico-inschatting en besluitvorming bij patiënten met syncope in de ambulancezorg is complex. Ambulanceprofessionals moeten in een kort tijdsbestek en onder hoge druk, met veel onderliggende informatie en onzekerheden risico’s inschatten en besluiten of een patiënt ingestuurd moet worden naar de spoedeisende hulp. Bij twee-derde van de ingestuurde syncope patiënten blijkt het niet ernstig te zijn. Twee HAN lectoraten ontwikkelden praktische en onderbouwde handvatten voor de praktijk (RAAK.PUB05.017 en RAAK.IMP.01.036). Deze zijn sinds juli 2022 onderdeel van de landelijke werkwijze. In vervolg hierop heeft de praktijk de lectoraten gevraagd om te kijken of de inzet van digitale- en informatietechnologie, specifiek generatieve kunstmatige intelligentie (AI) op basis van Large Language Models (LLM), hen nog verder kan ondersteunen bij het inschatten van risico’s en besluiten maken bij patiënten met syncope in de ambulancezorg. Deze KIEM-aanvraag is een proof of concept studie. We onderzoeken in hoeverre generatieve AI op basis van LMM technisch goed tekstbestanden kan analyseren op belangrijke medische- en omgevingsfactoren bij patiënten met een syncope. We kiezen voor een pilot concurrente validatiestudie door kwalitatieve tekstanalyse, in combinatie met aanvullende focusgroepinterviews voor de interpretatie van de uitkomsten. Voor de pilot concurrente validatiestudie gebruiken we tekstbestanden uit de Safe End studie. De eerdere analyse van deze tekstbestanden uit de Safe End studie fungeert als de gouden standaard. Zo wordt de validiteit van de generatieve AI-analyse op basis van LMM vastgesteld. In focusgroepinterviews bespreken we de impact en ethische aspecten van de bevindingen voor de praktijk, wetenschap, onderwijs en de (door)ontwikkeling van beslissingsondersteuningsinstrumenten voor de toekomst.
LARS draagt bij aan de optimalisatie van het gemeenschappelijke besluitvormingsproces voor de beste behandelkeuze voor een patiënt met chronische lage rugpijn. De combinatie van ‘evidence-based’ beslissingsondersteuning met patiëntvoorkeuren belooft de gepersonaliseerde zorg en het effect van de behandeling substantieel te verbeteren.