Background: Manual muscle mass assessment based on Computed Tomography (CT) scans is recognized as a good marker for malnutrition, sarcopenia, and adverse outcomes. However, manual muscle mass analysis is cumbersome and time consuming. An accurate fully automated method is needed. In this study, we evaluate if manual psoas annotation can be substituted by a fully automatic deep learning-based method.Methods: This study included a cohort of 583 patients with severe aortic valve stenosis planned to undergo Transcatheter Aortic Valve Replacement (TAVR). Psoas muscle area was annotated manually on the CT scan at the height of lumbar vertebra 3 (L3). The deep learning-based method mimics this approach by first determining the L3 level and subsequently segmenting the psoas at that level. The fully automatic approach was evaluated as well as segmentation and slice selection, using average bias 95% limits of agreement, Intraclass Correlation Coefficient (ICC) and within-subject Coefficient of Variation (CV). To evaluate performance of the slice selection visual inspection was performed. To evaluate segmentation Dice index was computed between the manual and automatic segmentations (0 = no overlap, 1 = perfect overlap).Results: Included patients had a mean age of 81 ± 6 and 45% was female. The fully automatic method showed a bias and limits of agreement of -0.69 [-6.60 to 5.23] cm2, an ICC of 0.78 [95% CI: 0.74-0.82] and a within-subject CV of 11.2% [95% CI: 10.2-12.2]. For slice selection, 84% of the selections were on the same vertebra between methods, bias and limits of agreement was 3.4 [-24.5 to 31.4] mm. The Dice index for segmentation was 0.93 ± 0.04, bias and limits of agreement was -0.55 [1.71-2.80] cm2.Conclusion: Fully automatic assessment of psoas muscle area demonstrates accurate performance at the L3 level in CT images. It is a reliable tool that offers great opportunities for analysis in large scale studies and in clinical applications.
Background: Manual muscle mass assessment based on Computed Tomography (CT) scans is recognized as a good marker for malnutrition, sarcopenia, and adverse outcomes. However, manual muscle mass analysis is cumbersome and time consuming. An accurate fully automated method is needed. In this study, we evaluate if manual psoas annotation can be substituted by a fully automatic deep learning-based method.Methods: This study included a cohort of 583 patients with severe aortic valve stenosis planned to undergo Transcatheter Aortic Valve Replacement (TAVR). Psoas muscle area was annotated manually on the CT scan at the height of lumbar vertebra 3 (L3). The deep learning-based method mimics this approach by first determining the L3 level and subsequently segmenting the psoas at that level. The fully automatic approach was evaluated as well as segmentation and slice selection, using average bias 95% limits of agreement, Intraclass Correlation Coefficient (ICC) and within-subject Coefficient of Variation (CV). To evaluate performance of the slice selection visual inspection was performed. To evaluate segmentation Dice index was computed between the manual and automatic segmentations (0 = no overlap, 1 = perfect overlap).Results: Included patients had a mean age of 81 ± 6 and 45% was female. The fully automatic method showed a bias and limits of agreement of -0.69 [-6.60 to 5.23] cm2, an ICC of 0.78 [95% CI: 0.74-0.82] and a within-subject CV of 11.2% [95% CI: 10.2-12.2]. For slice selection, 84% of the selections were on the same vertebra between methods, bias and limits of agreement was 3.4 [-24.5 to 31.4] mm. The Dice index for segmentation was 0.93 ± 0.04, bias and limits of agreement was -0.55 [1.71-2.80] cm2.Conclusion: Fully automatic assessment of psoas muscle area demonstrates accurate performance at the L3 level in CT images. It is a reliable tool that offers great opportunities for analysis in large scale studies and in clinical applications.
Aim To provide insight into the basic characteristics of decision making in the treatment of symptomatic severe aortic stenosis (SSAS) in Dutch heart centres with specific emphasis on the evaluation of frailty, cognition, nutritional status and physical functioning/functionality in (instrumental) activities of daily living [(I)ADL]. Methods A questionnaire was used that is based on the European and American guidelines for SSAS treatment. The survey was administered to physicians and non-physicians in Dutch heart centres involved in the decision-making pathway for SSAS treatment. Results All 16 Dutch heart centres participated. Before a patient case is discussed by the heart team, heart centres rarely request data from the referring hospital regarding patients’ functionality (n = 5), frailty scores (n = 0) and geriatric consultation (n = 1) as a standard procedure. Most heart centres ‘often to always’ do their own screening for frailty (n = 10), cognition/mood (n = 9), nutritional status (n = 10) and physical functioning/functionality in (I)ADL (n = 10). During heart team meetings data are ‘sometimes to regularly’ available regarding frailty (n = 5), cognition/mood (n = 11), nutritional status (n = 8) and physical functioning/functionality in (I)ADL (n = 10). After assessment in the outpatient clinic patient cases are re-discussed ‘sometimes to regularly’ in heart team meetings (n = 10). Conclusions Dutch heart centres make an effort to evaluate frailty, cognition, nutritional status and physical functioning/functionality in (I)ADL for decision making regarding SSAS treatment. However, these patient data are not routinely requested from the referring hospital and are not always available for heart team meetings. Incorporation of these important data in a structured manner early in the decision-making process may provide additional useful information for decision making in the heart team meeting.
LINK