Service of SURF
© 2025 SURF
From PLoS website: In general, dietary antigens are tolerated by the gut associated immune system. Impairment of this so-called oral tolerance is a serious health risk. We have previously shown that activation of the ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) by the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects both oral tolerance and food allergy. In this study, we determine whether a common plant-derived, dietary AhR-ligand modulates oral tolerance as well. We therefore fed mice with indole-3-carbinole (I3C), an AhR ligand that is abundant in cruciferous plants. We show that several I3C metabolites were detectable in the serum after feeding, including the high-affinity ligand 3,3´-diindolylmethane (DIM). I3C feeding robustly induced the AhR-target gene CYP4501A1 in the intestine; I3C feeding also induced the aldh1 gene, whose product catalyzes the formation of retinoic acid (RA), an inducer of regulatory T cells. We then measured parameters indicating oral tolerance and severity of peanut-induced food allergy. In contrast to the tolerance-breaking effect of TCDD, feeding mice with chow containing 2 g/kg I3C lowered the serum anti-ovalbumin IgG1 response in an experimental oral tolerance protocol. Moreover, I3C feeding attenuated symptoms of peanut allergy. In conclusion, the dietary compound I3C can positively influence a vital immune function of the gut.
MULTIFILE
From teh UU repository: "Background: Oral immunotherapy (OIT) is a promising therapeutic approach to treat food allergic patients. However, there are some concerns regarding its safety and long-term efficacy. The use of non-digestible oligosaccharides might improve OIT efficacy since they are known to directly modulate intestinal epithelial and immune cells in addition to acting as prebiotics. Aim: To investigate whether a diet supplemented with plant-derived fructo-oligosaccharides (FOS) supports the efficacy of OIT in a murine cow's milk allergy model and to elucidate the potential mechanisms involved. Methods: After oral sensitization to the cow's milk protein whey, female C3H/HeOuJ mice were fed either a control diet or a diet supplemented with FOS (1% w/w) and received OIT (10 mg whey) 5 days a week for 3 weeks by gavage. Intradermal (i.d.) and intragastric (i.g.) challenges were performed to measure acute allergic symptoms and mast cell degranulation. Blood and organs were collected to measure antibody levels and T cell and dendritic cell populations. Spleen-derived T cell fractions (whole spleen-and CD25-depleted) were transferred to naive recipient mice to confirm the involvement of regulatory T cells (Tregs) in allergy protection induced by OIT + FOS. Results: OIT + FOS decreased acute allergic symptoms and mast cell degranulation upon challenge and prevented the challenge-induced increase in whey-specific IgE as observed in sensitized mice. Early induction of Tregs in the mesenteric lymph nodes (MLN) of OIT + FOS mice coincided with reduced T cell responsiveness in splenocyte cultures. CD25 depletion in OIT + FOS-derived splenocyte suspensions prior to transfer abolished protection against signs of anaphylaxis in recipients. OIT + FOS increased serum galectin-9 levels. No differences in short-chain fatty acid (SCFA) levels in the cecum were observed between the treatment groups. Concisely, FOS supplementation significantly improved OIT in the acute allergic skin response, %Foxp3+ Tregs and %LAP+ Th3 cells in MLN, and serum galectin-9 levels. Conclusion: FOS supplementation improved the efficacy of OIT in cow's milk allergic mice. Increased levels of Tregs in the MLN and abolished protection against signs of anaphylaxis upon transfer of CD25-depleted cell fractions, suggest a role for Foxp3+ Tregs in the protective effect of OIT + FOS. "
LINK
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.
Nearly all waterborne products, such as food, beverages, pharmaceuticals, paints, biological (medical) samples, cosmetics and wood require preservation to prevent decomposition of the product due to microbial growth. Most non-food preservatives such as isothiazolinones, bronopol, and pyrithiones, are derived from oil and are increasingly more strictly regulated due to hazards such as ecotoxicity, sensibilization and development of allergies. The low legally permitted concentrations will not only become too low to realize preservation, they will also induce antimicrobial resistance. A chemical transition towards new, innovative, biobased, and eco-friendly preservatives is therefore required. Wydo NBD is dedicated to research towards sustainable ingredients for waterborne paints. For this, together with the Hanze University, non-hazardous, eco-friendly and biobased natural preservatives will be identified and further developed towards marketable products. The knowledge obtained in this project will contribute to the development of biological (paint) conservatives knowledge and improvement of current production methods of Wydo, with the potential for wider application in food and medical products. This project aims to identify natural antimicrobial additives and consists of three consecutive stages. First, an extensive, unbiased bioinformatics guided literature mining will be performed to find relationships between biological antimicrobial compounds and microbes found in paint. The most promising antimicrobials from this mining will be made available by chemical synthesis. Subsequently, the compounds will be assessed for their potential as novel natural preservatives for waterborne paints, by testing for their antimicrobial activity and stability.
Nearly all waterborne products, such as food, beverages, pharmaceuticals, paints, biological (medical) samples, cosmetics and wood require preservation to prevent decomposition of the product due to microbial growth. Most non-food preservatives such as isothiazolinones, bronopol, and pyrithiones, are derived from oil and are increasingly more strictly regulated due to hazards such as ecotoxicity, sensibilization and development of allergies. The low legally permitted concentrations will not only become too low to realize preservation, they will also induce antimicrobial resistance. A chemical transition towards new, innovative, biobased, and eco-friendly preservatives is therefore required. Wydo NBD is dedicated to research towards sustainable ingredients for waterborne paints. For this, together with the Hanze University, non-hazardous, eco-friendly and biobased natural preservatives will be identified and further developed towards marketable products. The knowledge obtained in this project will contribute to the development of biological (paint) conservatives knowledge and improvement of current production methods of Wydo, with the potential for wider application in food and medical products.This project aims to identify natural antimicrobial additives and consists of three consecutive stages. First, an extensive, unbiased bioinformatics guided literature mining will be performed to find relationships between biological antimicrobial compounds and microbes found in paint. The most promising antimicrobials from this mining will be made available by chemical synthesis. Subsequently, the compounds will be assessed for their potential as novel natural preservatives for waterborne paints, by testing for their antimicrobial activity and stability