Service of SURF
© 2025 SURF
Litska Strikwerda en Anke van Gorp (beiden hoofddocent en onderzoeker aan de Hogeschool Utrecht) richten zich op de dilemma's bij het gebruik van OxRec, een digitaal instrument dat een inschatting maakt van recidiverisico's en dat wordt gebruikt door medewerkers van de reclassering.
Wereldwijd zijn er veel initiatieven op het gebied van kunstmatige intelligentie (AI) die gebruik maken van slimme algoritmen, die op basis van trainingsgegevens meer verbanden kunnen leggen dan voor een menselijk brein mogelijk is. Nu er meer AI in gebruik is, rijzen er zorgen over discriminatie van bepaalde individuen of groepen. Het aantal voorbeelden van AI die onbedoeld vooroordelen bevatten of om een andere reden tot oneerlijke uitkomsten leiden, neemt toe
In opdracht van de VNG is onderzoek verricht naar de invloed van digitalisering en technologische ontwikkelingen op de juridische functie van gemeenten en de vraag op welke wijze hierop adequaat kan worden ingespeeld. Dit thema is zeer actueel. Technologische ontwikkelingen in de maatschappij stellen gemeenten voor (beleidsmatige) uitdagingen. Digitalisering biedt veel kansen om gemeentelijke dienstverlening en besluitvorming te verbeteren, maar kent tegelijkertijd risico’s. Door de recente toeslagenaffaire staan kwaliteit, rechtvaardigheid en transparantie van overheidsbesluitvorming terecht in het middelpunt van de belangstelling. De inzet van technologie en algoritmes speelt bij dienstverlening en besluitvorming een steeds belangrijkere rol. Dit geldt ook bij gemeentelijke besluitvorming. De uitdaging is om de kansen die technologie biedt te benutten, maar tegelijkertijd juridische kwaliteit te borgen en de menselijke maat te behouden.
De maatschappelijke discussies over de invloed van AI op ons leven tieren welig. De terugkerende vraag is of AI-toepassingen – en dan vooral recommendersystemen – een dreiging of een redding zijn. De impact van het kiezen van een film voor vanavond, met behulp van Netflix' recommendersysteem, is nog beperkt. De impact van datingsites, navigatiesystemen en sociale media – allemaal systemen die met algoritmes informatie filteren of keuzes aanraden – is al groter. De impact van recommendersystemen in bijvoorbeeld de zorg, bij werving en selectie, fraudedetectie, en beoordelingen van hypotheekaanvragen is enorm, zowel op individueel als op maatschappelijk niveau. Het is daarom urgent dat juist recommendersystemen volgens de waarden van Responsible AI ontworpen worden: veilig, eerlijk, betrouwbaar, inclusief, transparant en controleerbaar.Om op een goede manier Responsible AI te ontwerpen moeten technische, contextuele én interactievraagstukken worden opgelost. Op het technische en maatschappelijke niveau is al veel vooruitgang geboekt, respectievelijk door onderzoek naar algoritmen die waarden als inclusiviteit in hun berekening meenemen, en door de ontwikkeling van wettelijke kaders. Over implementatie op interactieniveau bestaat daarentegen nog weinig concrete kennis. Bekend is dat gebruikers die interactiemogelijkheden hebben om een algoritme bij te sturen of aan te vullen, meer transparantie en betrouwbaarheid ervaren. Echter, slecht ontworpen interactiemogelijkheden, of een mismatch tussen interactie en context kosten juist tijd, veroorzaken mentale overbelasting, frustratie, en een gevoel van incompetentie. Ze verhullen eerder dan dat ze tot transparantie leiden.Het ontbreekt ontwerpers van interfaces (UX/UI designers) aan systematische concrete kennis over deze interactiemogelijkheden, hun toepasbaarheid, en de ethische grenzen. Dat beperkt hun mogelijkheid om op interactieniveau aan Responsible AI bij te dragen. Ze willen daarom graag een pattern library van interactiemogelijkheden, geannoteerd met onderzoek over de werking en inzetbaarheid. Dit bestaat nu niet en met dit project willen we een substantiële bijdrage leveren aan de ontwikkeling ervan.
Een geschatte hoeveelheid van tussen de 35 en 140 miljoen kilo zwerfafval wordt jaarlijks in Nederland op straat of in de natuur aangetroffen. Gemeenten zijn verantwoordelijk voor het voorkomen en opruimen van zwerfafval. Daarom heeft bijvoorbeeld gemeente Breda de ambitie uitgesproken om de stad in 2030 zwerfafval vrij te hebben. Deze ambitieuze doelstelling moet bereikt worden door acties zowel op het vlak van preventie, als het opruimen en het hergebruik. Om deze acties kwantitatief te onderbouwen en te monitoren zijn gegevens over ligging, hoeveelheid en samenstelling van het zwerfafval noodzakelijk. Het is momenteel al mogelijk om zwerfafvaldata te verkrijgen om analyses op te verrichten. Deze data is afkomstig van vrijwilligers die middels apps als Litterati zwerfafval verzamelen en classificeren (labelen). Het toekennen van een label is een tijdrovende klus en levert maar een beperkt beeld van de totale hoeveelheid zwerfafval in een gemeente. Dit classificeren kan geautomatiseerd worden door object detectie algoritmen welke zijn getraind op afbeeldingen van zwerfafval. Om een groter gebied te monitoren zijn camerasystemen ontwikkeld die in staat zijn zwerfafval automatisch te detecteren. Technisch gezien zijn er steeds meer oplossingen om automatisch zwerfafval in kaart te brengen en te classificeren, maar een praktijkgerichte oplossing voor bijvoorbeeld beleidsmakers zonder technische kennis ontbreekt nog. In dit toegepast ontwerponderzoek werken we samen met gemeente Breda, gemeente ‘s-Hertogenbosch, stichting GoClean, Natuur- en milieuvereniging Markkant, stichting Nederland Schoon, de Antea Group en betrokken MKB-ers aan het antwoord op de onderzoeksvraag “Hoe kan zwerfafval in de openbare ruimte automatisch gedetecteerd en geclassificeerd worden vanuit verschillende, onafhankelijke bronnen met een zo beperkt mogelijke tijdsinvestering van de mens in dit proces.” De technische componenten die hiervoor nodig zijn worden samengevoegd in een gebruiksvriendelijk dataplatform. Op basis van de uitkomsten kunnen gemeenten (en andere publieke partijen) in Nederland datagedreven interventies ontwikkelen om zwerfafval tegen te gaan.
Noord-Nederland telt ongeveer 70.000 ha akkerbouw, waarvan 14.000 ha pootaardappelen. De totale jaaromzet van de pootaardappelteelt bedraagt ongeveer 230 miljoen euro (exclusief de omzet van toeleverende en dienstverlenende bedrijven). Van alle productielanden samen, neemt Noord-Nederland met 23% van de wereldwijde export van gecertificeerd pootgoed een absolute toppositie in. Om deze toppositie te behouden, is continu aandacht voor productiviteit, duurzaamheid en kwaliteitsverbetering vereist. Bij de huidige bedrijfsomvang kan een geautomatiseerde gewasinspectie daarbij zeer behulpzaam zijn. Kwalitatief hoogwaardiger inspectie tegen lagere kosten kan de kwaliteit en de kostprijs van gewassen in de precisielandbouw verbeteren. Voor pootgoedtelers is het belangrijk te weten wat de kwaliteit van de plant is, in relatie met de gepote aardappel. Doelstelling is het verkrijgen van inzicht in de methoden, technieken en algoritmen die nodig zijn voor het automatisch bepalen van het opkomstgedrag van individuele aardappelplanten met behulp van low-cost drones. Koelhuis Bergmans stelt de akkervelden waar opnames van gemaakt worden beschikbaar. Ana Vita heeft veel ervaring in het ontwikkelen van nieuwe markten in de precisielandbouw. De NHL is in het bezit van een ROC-light ontheffing om met drones tot 4 kg te mogen vliegen. Tevens onderzoekt de NHL welke methoden, technieken en algoritmen gebruikt kunnen worden. Dit project levert een dataset met hierin periodiek opgenomen beelden van aardappelplanten, methodes voor het bepalen van individuele aardappelplantgroei en een beschrijving van de onderzoeksresultaten in de vorm van een (wetenschappelijke) paper.