This dissertation focuses on the ability of frail older persons, living in homes for the elderly, to stay as independent as possible. The quality of life in older adults depends for a great deal on whether they are dependent from care or not, and to what extent they are dependent. Care dependency is directly linked to ADL performance. Older people experience failure when they cannot look after themselves any longer, after a life of hard work and build up independence. From the view of a geriatric physiotherapist, optimalization of physical fitness characteristics like muscle strength, flexibility, aerobic endurance, coordination, and balance is the tool which may improve performance of activities of daily living (ADL).
This dissertation focuses on the ability of frail older persons, living in homes for the elderly, to stay as independent as possible. The quality of life in older adults depends for a great deal on whether they are dependent from care or not, and to what extent they are dependent. Care dependency is directly linked to ADL performance. Older people experience failure when they cannot look after themselves any longer, after a life of hard work and build up independence. From the view of a geriatric physiotherapist, optimalization of physical fitness characteristics like muscle strength, flexibility, aerobic endurance, coordination, and balance is the tool which may improve performance of activities of daily living (ADL).
BACKGROUND: Over 30 % of older patients experience hospitalization-associated disability (HAD) (i.e., loss of independence in Activities of Daily Living (ADLs)) after an acute hospitalization. Despite its high prevalence, the mechanisms that underlie HAD remain elusive. This paper describes the protocol for the Hospital-Associated Disability and impact on daily Life (Hospital-ADL) study, which aims to unravel the potential mechanisms behind HAD from admission to three months post-discharge.METHODS/DESIGN: The Hospital-ADL study is a multicenter, observational, prospective cohort study aiming to recruit 400 patients aged ≥70 years that are acutely hospitalized at departments of Internal Medicine, Cardiology or Geriatrics, involving six hospitals in the Netherlands. Eligible are patients hospitalized for at least 48 h, without major cognitive impairment (Mini Mental State Examination score ≥15), who have a life expectancy of more than three months, and without disablement in all six ADLs. The study will assess possible cognitive, behavioral, psychosocial, physical, and biological factors of HAD. Data will be collected through: 1] medical and demographical data; 2] personal interviews, which includes assessment of cognitive impairment, behavioral and psychosocial functioning, physical functioning, and health care utilization; 3] physical performance tests, which includes gait speed, hand grip strength, balance, bioelectrical impedance analysis (BIA), and an activity tracker (Fitbit Flex), and; 4] analyses of blood samples to assess inflammatory and metabolic markers. The primary endpoint is additional disabilities in ADLs three months post-hospital discharge compared to ADL function two weeks prior to hospital admission. Secondary outcomes are health care utilization, health-related quality of life (HRQoL), physical performance tests, and mortality. There will be at least five data collection points; within 48 h after admission (H1), at discharge (H3), and at one (P1; home visit), two (P2; by telephone) and three months (P3; home visit) post-discharge. If the patient is admitted for more than five days, additional measurements will be planned during hospitalization on Monday, Wednesday, and Friday (H2).DISCUSSION: The Hospital-ADL study will provide information on cognitive, behavioral, psychosocial, physical, and biological factors associated with HAD and will be collected during and following hospitalization. These data may inform new interventions to prevent or restore hospitalization-associated disability.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
PBL is the initiator of the Work Programme Monitoring and Management Circular Economy 2019-2023, a collaboration between CBS, CML, CPB, RIVM, TNO, UU. Holidays and mobility are part of the consumption domains that PBL researches, and this project aims to calculate the environmental gains per person per year of the various circular behavioural options for both holiday behaviour and daily mobility. For both behaviours, a range of typical (default) trips are defined and for each several circular option explored for CO2 emissions, Global warming potential and land use. The holiday part is supplied by the Centre for Sustainability, Tourism and Transport (CSTT) of the BUas Academy of Tourism (AfT). The mobility part is carried out by the Urban Intelligence professorship of the Academy for Built Environment and Logistics (ABEL).The research question is “what is the environmental impact of various circular (behavioural) options around 1) holidays and 2) passenger mobility?” The consumer perspective is demarcated as follows:For holidays, transportation and accommodation are included, but not food, attractions visited and holiday activitiesFor mobility, it concerns only the circular options of passenger transport and private means of transport (i.e. freight transport, business travel and commuting are excluded). Not only some typical trips will be evaluated, but also the possession of a car and its alternatives.For the calculations, we make use of public databases, our own models and the EAP (Environmental Analysis Program) model developed by the University of Groningen. BUAs projectmembers: Centre for Sustainability, Tourism and Transport (AT), Urban Intelligence (ABEL).
An efficient and sustainable logistics process is essential for logistics companies to remain competitive and to manage the dynamic demands and service requirements. Specifically, the first- and last-mile hub-to-hub (inter) logistics is one of the most difficult operations to manage due to low volumes, repetitive operation and short-distance transport, and relatively high waiting times. With the advancements in Industry 4.0 technologies (Internet of Things, Big Data, Cloud computing, Artificial Intelligence), the consortium partners expect that the intelligent and connected technology is a viable solution to improve operational efficiency, coordination, and sustainability of this inter-hub logistics. Despite the promising potential, the impact of technology on inter- and intra-hub (inside hub) logistics operations (such as transportation, communication, and planning) is not well-established. The focus of STEERS is to explore the real-life challenges associated with the logistics operation in a small-to-medium size logistics hub and investigate the potential of intelligent and connected technology to address such challenges. This project will investigate the requirements for the application of automated vehicles in inter-hub transportation and simultaneously explore the potential of intelligent inter-hub corridors. Additionally, inter-hub communications will also provide the opportunity to explore their potential impact on the planning and coordination of intra-hub activities, with an explicit focus on the changing role of human planners. It combines the knowledge of education and research institutes (Hogeschool van Arnhem en Nijmegen, The University of Twente and Hogeschool Rotterdam), logistics industry partners (Bolk Container Transport and Combi Terminal Twente) and public institutes (XL Business Park, Port of Twente and Regio Twente). The insights obtained in this exploratory study will serve as a foundation for the follow-up RAAK-PRO project, in which real-world demonstrators will be developed and tested inside XL Business Park.