Service of SURF
© 2025 SURF
Based on a literature review, this article discusses how the challenge of diminishing clothing production volumes has been approached within the field of sustainable fashion. We identify six common strategies in literature and discuss the approach of user involvement in the process of design and/or manufacture of garments in detail. A critical analysis of the state of the art in the field points out that these strategies have been constructed, studied and promoted without empirical validation. The article concludes with a recommendation to move forward from conceptual to empirical studies. Analyses of existing initiatives and their results in terms of consumer buying behavior and obsolete inventory are recommended as first steps towards validation.
In this paper we investigate the precise focus required of a telemonitoring system for the domain of independently living elderly. Particularly, we investigate (1) the needs of telemonitoring for this particular domain, and (2) the requirements for such a telemonitoring system. For our investigation, we performed an extensive study of the literature, as well as performed interviews with 36 individuals active in the field. As a result, we established numerous needs to be considered, being foremost information need on safety, with regard to care response on emergencies (e.g., falling incidents, wandering), as well information need on dependence on care, with regard to inactivity, self-neglect and loneliness. Subsequently, we established numerous requirements to be addressed, being foremost the use of non-wearable sensors, unobtrusiveness, durability, reliability, privacy, and ubiquitousness. In our discussion of the requirements, we detailed specifically the topics of focus, functionality, and form of a telemonitoring system for this domain.
This paper presents the results of the research project ‘Going Eco, Going Dutch’ (2015- 2017), which investigated the production, design and branding of fashion textiles made from locally produced hemp fibers in the Netherlands. For fashion labels and designers it is often difficult to scrutinize the production of textile fabrics manufactured in non-European countries due to physical distance and, often, non-transparency. At the same time, many designers and established fashion brands increasingly search for sustainable textiles that could be recycled or upcycled after being used by consumers. For the project ‘Going Eco, Going Dutch’, local textile manufacturers and fashion brands closely collaborated to explore how to develop fashionable textiles made from locally produced hemp – from the very first fiber to the final branding of the fashion product. In addition to the technical insights on the production of hemp, this paper will present and highlight the importance of the visual identity of the textiles, which was created by using Dutch traditional crafts – suggesting that this should be understood in terms of Kristine Harper’s ‘aesthetic sustainability’ (2017) as an essential design strategy. In addition, this paper will reflect on the importance of storytelling by focusing on locality and transparency, and on creating an emotional bond and connection between producer, product and consumer. This paper will argue that this form of ‘emotional durability’ (Chapman, 2005, 2009) is essential to both design and branding strategies. Moreover, this paper will critically reflect on the performance of Dutchness – Dutch national identity – through these locally produced fibers, textiles and fashion products.
MULTIFILE
A feeling of worry, anxiety, loneliness and anticipation are commonplace in both medical and non-medical arenas such as elderly care. An innovative solution such as the ‘simple and effective’ comfyhand would offer better patient care and improved care efficiency with a high chance of long-term, economic efficiency. ComfyHand is a start-up in the healthcare sector that aims to develop sustainable products to improve patient wellbeing in healthcare settings. It does this by emulating the experience of holding a hand which gives the person comfort and support in moments where real human contact is not possible. Right now the comfyhand is in the development phase, working on several prototypes for test trials in elderly care and hospitals. In this project we want to explore the use of 3D printing for producing a comfyhand. Desired properties for the prototype include optimal heat transfer, softness, regulation of sweat, durability and sustainability. The goal of this study is to develop a prototype to test in a trial with patients within Envida, a care centre. The trial itself is out of scope of this project. This proposal focuses on researching the material of choice and the processability. Building on knowledge gained in a previous Kiem GoChem project and a Use Case (Shape3Dup) of a currently running Raak MKB project (Enlighten) on 3D printing of breast prostheses, several materials, designs and printing parameters will be tested.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.
Fontys University of Applied Science’s Institute of Engineering, and the Dutch Institute for Fundamental Energy Research (DIFFER) are proposing to set up a professorship to develop novel sensors for fusion reactors. Sensors are a critical component to control and optimise the unstable plasma of Tokamak reactors. However, sensor systems are particularly challenging in fusion-plasma facing components, such as the divertor. The extreme conditions make it impossible to directly incorporate sensors. Furthermore, in advanced reactor concepts, such as DEMO, access to the plasma via ports will be extremely limited. Therefore, indirect or non-contact sensing modalities must be employed. The research group Distributed Sensor Systems (DSS) will develop microwave sensor systems for characterising the plasma in a tokamak’s divertor. DSS will take advantage of recent rapid developments in high frequency integrated circuits, found, for instance, in automotive radar systems, to develop digital reflectometers. Access through the divertor wall will be achieved via surface waveguide structures. The waveguide will be printed using 3D tungsten printing that has improved precision, and reduced roughness. These components will be tested for durability at DIFFER facilities. The performance of the microwave reflectometer, including waveguides, will be tested by using it to analyse the geometry and dynamics of the Magnum PSI plasma beam. The development of sensor-based systems is an important aspect in the integrated research and education program in Electrical Engineering, where DSS is based. The sensing requirements from DIFFER offers an interesting and highly relevant research theme to DSS and exciting projects for engineering students. Hence, this collaboration will strengthen both institutes and the educational offerings at the institute of engineering. Furthermore millimeter wave (mmWave) sensors have a wide range of potential applications, from plasma characterisation (as in this proposal) though to waste separation. Our research will be a step towards realising these broader application areas.