Stringent nitrogen oxide (NOx) regulations are crucial for minimizing environmental harm and enhancing public health. The Selective Non-Catalytic Reduction (SNCR) technique is an effective after-treatment method for reducing NOx emissions in combustion systems. By injecting a reagent, typically ammonia or urea, into the flue gas within a specified temperature window, SNCR facilitates the chemical reaction that converts NOx into harmless nitrogen and water. The optimal temperature range for this reaction is critical for maximizing efficiency and effectiveness. The primary advantage of the SNCR technique is its lower installation and operating costs in comparison to other after-treatment methods. The partners involved in this proposal are highly interested in implementing the SNCR method to reduce NOx emissions from heavy-duty engines. This proposal aims to develop a numerical model to evaluate the NOx reduction potential in heavy-duty engine applications using the SNCR method. The model will enable the analysis of key parameters, including the injection site temperature and the reagent-to-NOx concentration ratio, to determine their impact on NOx reduction.
This project has no products
To be started
Not known