Het doel van KI-Agil is om, speciaal voor MKB bedrijven, de voorwaarden voor de implementatie van AI en de hierop steunende innovatieve branches te verbeteren. De Hanzehogeschool Groningen en het Instituut voor Duale Studies verkennen binnen zes MKB’s de grenzen van AI en zoeken naar implementeerbare gebruikersmogelijkheden, met het doel om nieuwe werkvormen en businessmodellen in samenwerking met deze bedrijven te ontwikkelen, waarbij rekening wordt gehouden met de maatschappelijke grondbeginselen.
The search for existing non-animal alternative methods for use in experiments is currently challenging because of the lack of both comprehensive structured databases and balanced keyword-based search strategies to mine unstructured textual databases. In this paper we describe 3Ranker, which is a fast, keyword-independent algorithm for finding non-animal alternative methods for use in biomedical research. The 3Ranker algorithm was created by using a machine learning approach, consisting of a Random Forest model built on a dataset of 35 million abstracts and constructed with weak supervision, followed by iterative model improvement with expert curated data. We found a satisfactory trade-off between sensitivity and specificity, with Area Under the Curve (AUC) values ranging from 0.85-0.95. Trials showed that the AI-based classifier was able to identify articles that describe potential alternatives to animal use, among the thousands of articles returned by generic PubMed queries on dermatitis and Parkinson's disease. Application of the classification models on time series data showed the earlier implementation and acceptance of Three Rs principles in the area of cosmetics and skin research, as compared to the area of neurodegenerative disease research. The 3Ranker algorithm is freely available at www.open3r.org; the future goal is to expand this framework to cover multiple research domains and to enable its broad use by researchers, policymakers, funders and ethical review boards, in order to promote the replacement of animal use in research wherever possible.
Objectives: Pulmonary hypertension is one of the leading causes of death in systemic sclerosis. Early detection and treatment of pulmonary hypertension in systemic sclerosis is crucial. Nailfold capillaroscopy microscopy, vascular autoantibodies AT1R and ETAR, and several candidate-biomarkers have the potential to serve as noninvasive tools to identify systemic sclerosis patients at risk for developing pulmonary hypertension. Here, we explore the classifying potential of nailfold capillaroscopy microscopy characteristics and serum levels of selected candidate-biomarkers in a sample of systemic sclerosis patients with and without different forms of pulmonary hypertension.Methods: A total of 81 consecutive systemic sclerosis patients were included, 40 with systemic sclerosis pulmonary hypertension and 41 with no pulmonary hypertension. In each group, quantitative and qualitative nailfold capillaroscopy microscopy characteristics, vascular autoantibodies AT1R and ETAR, and serum levels of 24 soluble serum factors were determined. For evaluation of the nailfold capillaroscopy microscopy characteristics, linear regression analysis accounting for age, sex, and diffusing capacity of the lungs for carbon monoxide percentage predicted was used. Autoantibodies and soluble serum factor levels were compared using two-sample t test with equal variances.Results: No statistically significant differences were observed in quantitative or qualitative nailfold capillaroscopy microscopy characteristics, or vascular autoantibody ETAR and AT1R titer between systemic sclerosis-pulmonary hypertension and systemic sclerosis-no pulmonary hypertension. In contrast, several serum levels of soluble factors differed between groups: Endostatin, sVCAM, and VEGFD were increased, and CXCL4, sVEGFR2, and PDGF-AB/BB were decreased in systemic sclerosis-pulmonary hypertension. Random forest classification identified Endostatin and CXCL4 as the most predictive classifiers to distinguish systemic sclerosispulmonary hypertension from systemic sclerosis-no pulmonary hypertension.Conclusion: This study shows the potential for several soluble serum factors to distinguish systemic sclerosis-pulmonary hypertension from systemic sclerosis-no pulmonary hypertension. We found no classifying potential for qualitative or quantitative nailfold capillaroscopy microscopy characteristics, or vascular autoantibodies.
Artificial intelligence (AI) is an emerging technology and offers opportunities for developing innovative products and services. Traditionally, innovation process models are tools to support innovation. However, existing innovation process models are criticized for being generic, rigid, and resource-intensive, making them challenging for small and medium-sized businesses (SMBs) to implement for developing AI-enabled products and services. To tackle these issues, we propose IPAPS, a novel innovation process model. To develop the IPAPS model, we employ the Design Science Research Methodology (DSRM). Initially, we conducted a literature review to establish an ontology of the innovation process. Subsequently, the ontology is used to develop the IPAPS model. To evaluate the IPAPS model, we apply it to two real-world cases retrospectively. The evaluation of IPAPS has yielded positive results and points in the direction of a valid artefact. However, further research is required to rigorously validate and refine IPAPS.
Finished
Not known