This article discusses results from an international contest, open for university student teams (bachelor and master), involving the design, construction, and testing of small wind turbines in a large wind tunnel. The wind tunnel has an outlet of 2.85 x 2.85 m allowing a maximum rotor swept area of 2 m2 without significant tunnel effects. Both horizontal and vertical axis wind turbines are part of the competition. The turbines are evaluated by an external jury of industry experts based on criteria such as Annual Energy Production, cut-in wind speed, innovations, design, and sustainability. Although the contest has been initiated in 2013 with an educational focus, it has also evolved into a valuable database for scientific purposes by providing a decade worth of performance measurements for roughly 9-10 various turbine concepts each year. The collected data may serve as a unique validation resource for assessing the accuracy of design codes in modelling diverse turbine concepts thanks to detailed design reports with model descriptions accompanying each turbine (such turbine descriptions are often considered confidential for field measurements). The paper aims to explore the scientific value of this database by comparing calculations with measurements, offering explanations where possible, and reporting intriguing findings on unconventional concepts' performance. Even though not all observations could be explained fully they provide food for thought. Recommendations are provided for both students to enhance their designs and for contest organizers to elevate the scientific value of the measurements in future contests.
Document (PDF)
Not known