Dienst van SURF
© 2025 SURF
This paper assesses wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers. An experimental set-up with sonic anemometers placed on top of the barrier in reference positions is realized. The effect on wind speed magnitude, inflow angle and turbulence intensity is analysed. The annual energy yield of a micro wind turbine is estimated and compared using data from a micro-wind turbine wind tunnel experiment and field data. Electrical energy costs are discussed as well as structural integration cost reduction and the potential energy yield could decrease costs. It was found that instantaneous wind direction towards the barrier and the height of observation play an influential role for the results. Wind speed increases in perpendicular flows while decreases in parallel flow, by +35% down to −20% from the reference. The azimuth of the noise barrier expressed in wind field rotation angles was found to be influential resulted in 50%–130% changes with respect to annual energy yield. A micro wind turbine (0.375 kW) would produce between 100 and 600 kWh annually. Finally, cost analysis with cost reductions due to integration and the energy yield changes due to the barrier, show a LCOE reduction at 60%–90% of the reference value. https://doi.org/10.1016/j.jweia.2020.104206
This paper presents a report of some of the activities of the International Energy Agency's (IEA) Wind TCP Task 39. By identifying best practices in an international collaboration, Task 39 hopes to provide the scientific evidence to inform improved regulations and standards, increasing the effectiveness of quiet wind turbine technology. Task 39 is divided into five separate work packages, which address the broad wind turbine noise topic in successive steps; from wind turbine noise generation (WP2), to airborne noise propagation over large distances (WP3). The assessment of wind turbine noise and its impact on humans is addressed in WP4, while WP5 is dealing with other aspects of perception and acceptance, which may be related to noise. All WPs contribute to a dedicated Work Package on dissemination (WP1). This paper provides an update of activities primarily associated with the socio-psychological aspects of wind turbine noise (WP4 and WP5). Through the consideration of a wide variety of factors, including measurement technologies, auralisation and psychology, the effects on noise perception, annoyance and its impact on wellbeing and health is being further investigated. This paper presents a discussion of the activities of each member country and highlights some of the key research questions that need to be further considered.
LINK
tract Micro wind turbines can be structurally integrated on top of the solid base of noise barriers near highways. A number of performance factors were assessed with holistic experiments in wind tunnel and in the field. The wind turbines underperformed when exposed in yawed flow conditions. The theoretical cosθ theories for yaw misalignment did not always predict power correctly. Inverter losses turned out to be crucial especially in standby mode. Combination of standby losses with yawed flow losses and low wind speed regime may even result in a net power consuming turbine. The micro wind turbine control system for maintaining optimal power production underperformed in the field when comparing tip speed ratios and performance coefficients with the values recorded in the wind tunnel. The turbine was idling between 20%–30% of time as it was assessed for sites with annual average wind speeds of three to five meters per second without any power production. Finally, the field test analysis showed that inadequate yaw response could potentially lead to 18% of the losses, the inverter related losses to 8%, and control related losses to 33%. The totalized loss led to a 48% efficiency drop when compared with the ideal power production measured before the inverter. Micro wind turbine’s performance has room for optimization for application in turbulent wind conditions on top of noise barriers. https://doi.org/10.3390/en14051288
De energietransitie van fossiele naar duurzame energie krijgt brede maatschappelijk aandacht. Er zijn projecten voor het plaatsen van zonnepanelen en windturbines. Dit betreft zowel nationale projecten (zoals windparken op de Noordzee en de discussies over waterstof) als kleinere lokale projecten in huizen in woonwijken en bedrijfsgebouwen op bedrijventerreinen. Netcongestie is een recente ontwikkeling, wat betekent dat het elektriciteitsnet niet meer genoeg transportcapaciteit heeft om afspraken te kunnen maken voor nieuwe aansluitingen. Netcongestie beperkt de uitbreiding en vestiging van nieuwe bedrijven in sterke mate. De opschaling van de installatie van duurzame bronnen zoals zon- en windenergie wordt er door onmogelijk. Dit leidt tot een sterke vermindering van de toekomstige economische activiteiten en brengt het halen van duurzame-energiedoelstellingen in gevaar. Op korte termijn is volledig fysieke versterking van het net onmogelijk door gebrek aan mankracht en trage vergunningsprocedures. Een tussentijdse oplossing is het optimaal benutten van de netcapaciteit door de werkelijke vraag en aanbod te meten en beter op elkaar af te stemmen. In deze aanvraag stellen wij een onderzoeksaanpak voor om op lokaal bedrijventerreinenniveau deze sturing, vanuit een nauwe samenwerking tussen de netbeheerder, de parkorganisatie en de lokale (MKB) bedrijven op een bedrijvenpark, vorm te geven. Dit verkennend onderzoek begint met het in kaart te brengen van lokale (energie-)behoeftes en oplossingsmogelijkheden op laagspanningsniveau. Dit gebeurt door de informatie van slimme meters en de laagspanningstrafo’s momentaan uit te lezen en met AI de te verwachtte belasting te bepalen. Als bekend is wat de lokale regelmogelijkheden zijn, kan er met de bedrijven worden nagegaan hoe het huidige laagspanningsnet beter kan worden benut voorafgaand aan grote netverzwaring. Wij inventariseren hoe de opties en de voordelen voor de ondernemers op een begrijpelijke manier kunnen worden gepresenteerd, bijvoorbeeld met behulp van een dashboard.
Het project "CompEfficient" onderzoekt het verbeteren van energie-efficiëntie in de productie van composietmaterialen, gebruikt in transport en bouw, zoals vliegtuigen, auto’s, treinen, en windturbines. Composieten zijn gunstig door hun lichtgewicht en sterke mechanische eigenschappen die bijdragen aan lagere CO2-emissies. Dit onderzoek focust op zowel biobased als hoogwaardige thermoplastische composieten, waarbij traditionele fabricagemethoden veel energie vereisen, resulterend in relatief hoge CO2-uitstoot. Geleid door Hogeschool Inholland, met industriële partners Eve Reverse en Cato Composites, streeft dit eenjarige project ernaar energie-efficiëntie te verhogen door het persproces - waarbij materialen worden verwarmd en gevormd - te optimaliseren. Dit omvat het verminderen van energieverlies bij het verwarmen en het drukzetten van materialen. Het project zal bestaande pers- en verwarmingsmethoden evalueren en nieuwe technologieën evalueren en testen in een labomgeving, met als doel het energieverbruik te minimaliseren terwijl de productkwaliteit gehandhaafd blijft. De verwachte uitkomsten zullen bredere implicaties hebben voor de industrie door bij te dragen aan duurzamere productieprocessen en het verminderen van de milieu-impact van de composietproductie. Deze innovaties zullen niet alleen van belang zijn voor de betrokken bedrijven maar kunnen ook internationaal worden toegepast, gezien de groeiende vraag naar energie-efficiënte en milieuvriendelijke productiemethoden. Dit project biedt een kans om de voetafdruk van de composietindustrie aanzienlijk te verminderen en ondersteunt de overgang naar meer duurzame industriële processen.
Als gevolg van de energietransitie wordt het steeds moeilijker om energieaanbod en -vraag op elkaar af te stemmen en ontstaan problemen op het elektriciteitsnet. Energieopslag biedt een oplossing: duurzame energie wordt opgeslagen op momenten dat er aanbod en weinig energievraag is en beschikbaar gesteld wanneer er weinig aanbod en veel vraag is. Lokale opslag biedt een kans om lokale uitval van het elektriciteitsnet te voorkomen en geeft meerwaarde aan duurzame energie. Opslag in waterstof is uitermate geschikt voor zowel toepassingen op MW-schaal (windparken), voor seizoensopslag en voor toepassingen waar distributie relevant is. De wens van bedrijventerreinen om te verduurzamen biedt een kans om gericht aan oplossingen voor lokale energieopslag in waterstof en bijbehorende toepassingen te werken. In dit project werkt de HAN samen met MKB-bedrijven, Saxion, TU Delft, lokale overheden en een aantal overige partners aan het ontwikkelen en optimaliseren van een energieopslagsysteem gebaseerd op waterstof en bijbehorende waterstoftoepassingen op en voor bedrijventerrein IPKW in Arnhem. Beschikbare windenergie van in aanbouw zijnde turbines langs de Rijn bij IPKW vormen de aanleiding voor het ontwerpen, modelleren, construeren en testen van een (geschaald) energieopslagsysteem gebaseerd op de productie, en opslag van waterstof. Specifieke toepassingen op het industriepark worden geïnventariseerd, en waar mogelijk gerealiseerd en gemonitord, voor met name lokaal bedrijfstransport en elektriciteitslevering. Scenario’s voor ontwikkeling en toepassing van de technologie ontwikkeld en haalbaarheidsstudies uitgevoerd. Kennis en expertise worden ontwikkeld om het proces van optimale implementatie van waterstof voor energieopslag in een energieketen met specifieke toepassingen op een bedrijventerrein te ondersteunen. Met dit project bouwen wij voort op de vele eerdere waterstofprojecten die bij de HAN zijn uitgevoerd en maken we gebruik van ons recent gerealiseerde shared facility HAN Waterstoflab op IPKW.