Dienst van SURF
© 2025 SURF
In this study we measured the performance times on the Wheelchair Mobility Performance (WMP) test during different test conditions to see if the performance times changed when wheelchair settings were changed. The overall performance time on the WMP test increased when the tire pressure was reduced and also when extra mass was attached to the wheelchair. It can be concluded that the WMP test is sensitive to changes in wheelchair settings. It is recommended to use this field-based test in further research to investigate the effect of wheelchair settings on mobility performance time. Objective: The Wheelchair Mobility Performance (WMP) test is a reliable and valid measure to assess mobility performance in wheelchair basketball. The aim of this study was to examine the sensitivity to change of the WMP test by manipulating wheelchair configurations. Methods: Sixteen wheelchair basketball players performed the WMP test 3 times in their own wheelchair: (i) without adjustments (“control condition”); (ii) with 10 kg additional mass (“weighted condition”); and (iii) with 50% reduced tyre pressure (“tyre condition”). The outcome measure was time (s). If paired t-tests were significant (p < 0.05) and differences between conditions were larger than the standard error of measurement, the effect sizes (ES) were used to evaluate the sensitivity to change. ES values ≥0.2 were regarded as sensitive to change. Results: The overall performance times for the manipulations were significantly higher than the control condition, with mean differences of 4.40 s (weight – control, ES = 0.44) and 2.81 s (tyre – control, ES = 0.27). The overall performance time on the WMP test was judged as sensitive to change. For 8 of the 15 separate tasks on the WMP test, the tasks were judged as sensitive to change for at least one of the manipulations. Conclusion: The WMP test can detect change in mobility performance when wheelchair configurations are manipulated. https://www.medicaljournals.se/jrm/content/html/10.2340/16501977-2341
MULTIFILE
OBJECTIVE: The purpose of this study was to determine the effects of seat height, wheelchair mass and grip on mobility performance among wheelchair basketball players and to investigate whether these effects differ between classification levels. METHODS: Elite wheelchair basketball players with a low (n= 11, class 1 or 1.5) or high (n= 10, class 4 or 4.5) classification performed a field-based wheelchair mobility performance (WMP) test. Athletes performed the test six times in their own wheelchair, of which five times with different configurations, a higher or lower seat height, with additional distally or centrally located extra mass, and with gloves. The effects of these configurations on performance times and the interaction with classification were determined. RESULTS: Total performance time on the WMP test was significantly reduced when using a 7.5% lower seat height. Additional mass (7.5%) and glove use did not lead to changes in performance time. Effects were the same for the two classification levels. CONCLUSIONS: The methodology can be used in a wheelchair fitting process to search for the optimal individual configuration to enhance mobility performance. Out of all adjustments possible, this study focused on seat height, mass and grip only. Further research can focus on these possible adjustments to optimize mobility performance in wheelchair basketball. DOI: 10.3233/TAD-190251 LinkedIn: https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
Objective: This study aimed to investigate which characteristics of athlete, wheelchair and athlete-wheelchair interface are the best predictors of wheelchair basketball mobility performance. Design: A total of 60 experienced wheelchair basketball players performed a wheelchair mobility performance test to assess their mobility performance. To determine which variables were the best predictors of mobility performance, forward stepwise linear regression analyses were performed on a set of 33 characteristics, including 10 athlete, 19 wheelchair, and 4 athlete-wheelchair interface characteristics. Results: A total of 8 of the characteristics turned out to be significant predictors of wheelchair basketball mobility performance. Classification, experience, maximal isometric force, wheel axis height, and hand rim diameter—which both are interchangeable with each other and wheel diameter—camber angle, and the vertical distance between shoulder and rear wheel axis—which was interchangeable with seat height—were positively associated with mobility performance. The vertical distance between the front seat and the footrest was negatively associated with mobility performance. Conclusion: With this insight, coaches and biomechanical specialists are provided with statistical findings to determine which characteristics they could focus on best to improve mobility performance. Six out of 8 predictors are modifiable and can be optimized to improve mobility performance. These adjustments could be carried out both in training (maximal isometric force) and in wheelchair configurations (eg, camber angle). https://doi.org/10.1123/jsr.2017-0142 LinkedIn: https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/moniqueberger/ https://www.linkedin.com/in/rienkvdslikke/
MULTIFILE