Dienst van SURF
© 2025 SURF
The aim of this study was to test the inter- and intraobserver reliability of the Physician Rating Scale (PRS) and the Edinburgh Visual Gait Analysis Interval Testing (GAIT) scale for use in children with cerebral palsy (CP). Both assessment scales are quantitative observational scales, evaluating gait. The study involved 24 patients ages 3 to 10 years (mean age 6.7 years) with an abnormal gait caused by CP. They were all able to walk independently with or without walking aids. Of the children 15 had spastic diplegia and 9 had spastic hemiplegia. With a minimum time interval of 6 weeks, video recordings of the gait of these 24 patients were scored twice by three independent observers using the PRS and the GAIT scale. The study showed that both the GAIT scale and the PRS had excellent intraobserver reliability but poor interobserver reliability for children with CP. In the total scores of the GAIT scale and the PRS, the three observers showed systematic differences. Consequently, the authors recommend that longitudinal assessments of a patient should be done by one observer only.
LINK
In order to achieve a level of community involvement and physical independence, being able to walk is the primary aim of many stroke survivors. It is therefore one of the most important goals during rehabilitation. Falls are common in all stages after stroke. Reported fall rates in the chronic stage after stroke range from 43 to 70% during one year follow up. Moreover, stroke survivors are more likely to become repeated fallers as compared to healthy older adults. Considering the devastating effects of falls in stroke survivors, adequate fall risk assessment is of paramount importance, as it is a first step in targeted fall prevention. As the majority of all falls occur during dynamic activities such as walking, fall risk could be assessed using gait analysis. It is only recent that technology enables us to monitor gait over several consecutive days, thereby allowing us to assess quality of gait in daily life. This thesis studies a variety of gait assessments with respect to their ability to assess fall risk in ambulatory chronic stroke survivors, and explores whether stroke survivors can improve their gait stability through PBT.
Knee joint instability is frequently reported by patients with knee osteoarthritis (KOA). Objective metrics to assess knee joint instability are lacking, making it difficult to target therapies aiming to improve stability. Therefore, the aim of this study was to compare responses in neuromechanics to perturbations during gait in patients with self-reported knee joint instability (KOA-I) versus patients reporting stable knees (KOA-S) and healthy control subjects.Forty patients (20 KOA-I and 20 KOA-S) and 20 healthy controls were measured during perturbed treadmill walking. Knee joint angles and muscle activation patterns were compared using statistical parametric mapping and discrete gait parameters. Furthermore, subgroups (moderate versus severe KOA) based on Kellgren and Lawrence classification were evaluated.Patients with KOA-I generally had greater knee flexion angles compared to controls during terminal stance and during swing of perturbed gait. In response to deceleration perturbations the patients with moderate KOA-I increased their knee flexion angles during terminal stance and pre-swing. Knee muscle activation patterns were overall similar between the groups. In response to sway medial perturbations the patients with severe KOA-I increased the co-contraction of the quadriceps versus hamstrings muscles during terminal stance.Patients with KOA-I respond to different gait perturbations by increasing knee flexion angles, co-contraction of muscles or both during terminal stance. These alterations in neuromechanics could assist in the assessment of knee joint instability in patients, to provide treatment options accordingly. Furthermore, longitudinal studies are needed to investigate the consequences of altered neuromechanics due to knee joint instability on the development of KOA.