Dienst van SURF
© 2025 SURF
Dark homogenous fungal-based layers called biofinishes and vegetable oils are keyingredients of an innovative wood protecting system. The aim of this study was todetermine which of the vegetable oils that have been used to generate biofinishes onwood will provide carbon and energy for the biofinish-inhabiting fungus Aureobasidiummelanogenum, and to determine the effect of the oil type and the amount of oil on thecell yield. Aureobasidium melanogenum was cultivated in shake flasks with differenttypes and amounts of carbon-based nutrients. Oil-related total cell and colony-formingunit growth were demonstrated in suspensions with initially 1% raw linseed,stand linseed, and olive oil. Oil-related cell growth was also demonstrated with rawlinseed oil, using an initial amount of 0.02% and an oil addition during cultivation. Nilered staining showed the accumulation of fatty acids inside cells grown in the presenceof oil. In conclusion, each tested vegetable oil was used as carbon and energysource by A. melanogenum. The results indicated that stand linseed oil provides lesscarbon and energy than olive and raw linseed oil. This research is a fundamental stepin unraveling the effects of vegetable oils on biofinish formation.
MULTIFILE
Vegetables have low taste intensities, which might contribute to low acceptance. The aim of this study was to investigate the effect of taste (sweetness, sourness, bitterness, umami, and saltiness) and fattiness enhancement on consumer acceptance of cucumber and green capsicum purees. Three concentrations of sugar, citric acid, caffeine, mono-sodium glutamate, NaCl, and sunflower oil were added to pureed cucumber and green capsicum. Subjects (n = 66,35.6 ± 17.7 y) rated taste and fattiness intensity. Different subjects (n = 100, 33.2 ± 16.5 years) evaluated acceptance of all pureed vegetables. Taste intensities of vegetable purees were significantly different (P < 0.05) between the three tastant concentrations except for umami in both vegetable purees, sourness in green capsicum puree, and fattiness in cucumber puree. Only enhancement of sweetness significantly (P < 0.05) increased acceptance of both vegetable purees compared to unmodified purees. In cucumber purees, relatively small amounts of added sucrose (2%) increased acceptance already significantly, whereas in green capsicum acceptance increased significantly only with addition of 5% sucrose. Enhancement of other taste modalities did not significantly increase acceptance of both vegetable purees. Enhancing saltiness and bitterness significantly decreased acceptance of both vegetable purees. We conclude that the effect of taste enhancement on acceptance of vegetable purees differs between tastants and depends on tastant concentration and vegetable type. With the exception of sweetness, taste enhancement of taste modalities such as sourness, bitterness, umami, and saltiness was insufficient to increase acceptance of vegetable purees. We suggest that more complex taste, flavor, or texture modifications are required to enhance acceptance of vegetables.
In this article, we assess the potential of alternative land use systems using non-drainage peatland species which could eventually phase out or partly replace oil palm plantations on undrainable peatlands. We have used the ecosystem services approach to analyse what scenarios using drainage-free peatland species could be suitable alternatives for oil palm cultivation on peat and how these scenarios compare to oil palm plantations in terms of selected ecosystem services. Our results indicate that alternative paludiculture systems will provide more direct and indirect ecosystem services than oil palm plantations on peat. We also found that stakeholders were aware of issues with growing oil palm on peat, and that there was a general intention for sustainable use of peatlands amongst several groups of stakeholders. Replacing oil palm with alternative systems such as paludiculture in Malaysia is not yet realistic. The most important impediments are a lack of knowledge on potential of non-drainage peatland species and its associated value chains, as well as the technical difficulty for smallholders to implement such a system. We recommend starting experimental plantings with paludiculture systems to further test species performance, life cycle analysis, growth, intercropping limitations and possibilities, yields and improvements in the value chain.
MULTIFILE