Dienst van SURF
© 2025 SURF
The synthesis of total cellular proteins in Escherichia coli K12 was studied in batch culture following exposure of cells to low concentrations of monochlorophenol, pentachlorophenol and cadmium chloride. Changes in protein patterns were identified after pulse-chase labelling of proteins with [35S]methionine and subsequent two-dimensional gel electrophoresis (2D-PAGE). We demonstrated that besides the induction of some stress proteins, also a transient decrease in the rate of synthesis of other proteins occurred. Two of these proteins were identified as OmpF and aspartate transcarbamoylase (ATCase). Their transient repression appeared to be a general response to stress elicited by different pollutants and may therefore be used as a general and sensitive early warning system for pollutant stress.
Many articles have been published on scale-down concepts as well as additive manufacturing techniques. However, information is scarce when miniaturization and 3D printing are applied in the fabrication of bioreactor systems. Therefore, garnering information for the interfaces between miniaturization and 3D printing becomes important and essential. The first goal is to examine the miniaturization aspects concerning bioreactor screening systems. The second goal is to review successful modalities of 3D printing and its applications in bioreactor manufacturing. This paper intends to provide information on anaerobic digestion process intensification by fusion of miniaturization technique and 3D printing technology. In particular, it gives a perspective on the challenges of 3D printing and the options of miniature bioreactor systems for process high-throughput screening.
LINK
Particle image velocimetry has been widely used in various sectors from the automotive to aviation, research, and development, energy, medical, turbines, reactors, electronics, education, refrigeration for flow characterization and investigation. In this study, articles examined in open literature containing the particle image velocimetry techniques are reviewed in terms of components, lasers, cameras, lenses, tracers, computers, synchronizers, and seeders. The results of the evaluation are categorized and explained within the tables and figures. It is anticipated that this paper will be a starting point for researchers willing to study in this area and industrial companies willing to include PIV experimenting in their portfolios. In addition, the study shows in detail the advantages and disadvantages of past and current technologies, which technologies in existing PIV laboratories can be renewed, and which components are used in the PIV laboratories to be installed.