Dienst van SURF
© 2025 SURF
The aim of this study was to test the inter- and intraobserver reliability of the Physician Rating Scale (PRS) and the Edinburgh Visual Gait Analysis Interval Testing (GAIT) scale for use in children with cerebral palsy (CP). Both assessment scales are quantitative observational scales, evaluating gait. The study involved 24 patients ages 3 to 10 years (mean age 6.7 years) with an abnormal gait caused by CP. They were all able to walk independently with or without walking aids. Of the children 15 had spastic diplegia and 9 had spastic hemiplegia. With a minimum time interval of 6 weeks, video recordings of the gait of these 24 patients were scored twice by three independent observers using the PRS and the GAIT scale. The study showed that both the GAIT scale and the PRS had excellent intraobserver reliability but poor interobserver reliability for children with CP. In the total scores of the GAIT scale and the PRS, the three observers showed systematic differences. Consequently, the authors recommend that longitudinal assessments of a patient should be done by one observer only.
LINK
Introduction: Retrospective studies suggest that a rapid initiation of treatment results in a better prognosis for patients in the emergency department. There could be a difference between the actual medication administration time and the documented time in the electronic health record. In this study, the difference between the observed medication administration time and documentation time was investigated. Patient and nurse characteristics were also tested for associations with observed time differences. Methods: In this prospective study, emergency nurses were followed by observers for a total of 3 months. Patient inclusion was divided over 2 time periods. The difference in the observed medication administration time and the corresponding electronic health record documentation time was measured. The association between patient/nurse characteristics and the difference in medication administration and documentation time was tested with a Spearman correlation or biserial correlation test. Results: In 34 observed patients, the median difference in administration and documentation time was 6.0 minutes (interquartile range 2.0-16.0). In 9 (26.5%) patients, the actual time of medication administration differed more than 15 minutes with the electronic health record documentation time. High temperature, lower saturation, oxygen-dependency, and high Modified Early Warning Score were all correlated with an increasing difference between administration and documentation times. Discussion: A difference between administration and documentation times of medication in the emergency department may be common, especially for more acute patients. This could bias, in part, previously reported time-to-treatment measurements from retrospective research designs, which should be kept in mind when outcomes of retrospective time-to-treatment studies are evaluated.
Dreams that appear to predict future events that could not have been anticipated through any known inferential processes have been reported for centuries, and dreams that appear to anticipate the death of an acquaintance or loved one are particularly common. Such reports become more suggestive of genuine precognition if there are no natural cues (such as an illness) to an impending death and if the time interval between the dream and the subsequent death is brief. Most reports are difficult to evaluate because we dream many times each night but typically remember and report only a salient subset of our dreams. Thus we cannot assess whether the time interval between a death-related dream and the death of the dream character is brief or lengthy because we have no control set of non-death-related dreams to which its time interval can be compared. The study reported here provides just such a control set by comparing deathrelated and non-death-related dreams featuring the same set of dream characters who died after the dreams occurred. These were drawn from the author's own dream journal in which he has recorded his nightly dreams for nearly twenty-five years. The mean time interval between death-related dreams and the person's subsequent death was significantly shorter than the time interval between non-death-related dreams and his or her death, t(11) = 3.30, p =.004, one-tailed. Cases in which death-related dreams occurred after the characters had died are also considered. Seven of the cases are discussed in detail.
LINK
Predictive maintenance, using data of thousands of sensors already available, is key for optimizing the maintenance schedule and further prevention of unexpected failures in industry. Current maintenance concepts (in the maritime industry) are based on a fixed maintenance interval for each piece of equipment with enough safety margin to minimize incidents. This means that maintenance is most of the time carried out too early and sometimes too late. This is in particular true for maintenance on maritime equipment, where onshore maintenance is strongly preferred over offshore maintenance and needs to be aligned with the vessel’s operations schedule. However, state-of-the-art predictive maintenance methods rely on black-box machine learning techniques such as deep neural networks that are difficult to interpret and are difficult to accept and work with for the maintenance engineers. The XAIPre project (pronounce “Xyper”) aims at developing Explainable Predictive Maintenance (XPdM) algorithms that do not only provide the engineers with a prediction but in addition, with 1) a risk analysis on the components when delaying the maintenance, and 2) what the primary indicators are that the algorithms used to create inference. To use predictive maintenance effectively in Maritime operations, the predictive models and the optimization of the maintenance schedule using these models, need to be aware of the past and planned vessel activities, since different activities affect the lifetime of the machines differently. For example, the degradation of a hydraulic pump inside a crane depends on the type of operations the crane performs. Thus, the models do not only need to be explainable but they also need to be aware of the context which is in this case the vessel and machinery activity. Using sensor data processing and edge-computing technologies that will be developed and applied by the Hanze UAS in Groningen, context information is extracted from the raw sensor data. The XAIPre project combines these Explainable Context Aware Machine Learning models with state-of-the-art optimizers, that we already developed in the NWO CIMPLO project at LIACS, in order to develop optimal maintenance schedules for machine components. The optimizers will be adapted to fit within XAIPre. The resulting XAIPre prototype offers significant competitive advantages for companies such as Heerema, by increasing the longevity of machine components, increasing worker safety, and decreasing maintenance costs. XAIPre will focus on the predictive maintenance of thrusters, which is a key sub-system with regards to maintenance as it is a core part of the vessels station keeping capabilities. Periodic maintenance is currently required in fixed intervals of 5 years. XPdM can provide a solid base to deviate from the Periodic Maintenance prescriptions to reduce maintenance costs while maintaining quality. Scaling up to include additional components and systems after XAIPre will be relatively straightforward due to the accumulated knowledge of the predictive maintenance process and the delivered methods. Although the XAIPre system will be evaluated on the use-cases of Heerema, many components of the system can be utilized across industries to save maintenance costs, maximize worker safety and optimize sustainability.
Predictive maintenance, using data of thousands of sensors already available, is key for optimizing the maintenance schedule and further prevention of unexpected failures in industry.Current maintenance concepts (in the maritime industry) are based on a fixed maintenance interval for each piece of equipment with enough safety margin to minimize incidents. This means that maintenance is most of the time carried out too early and sometimes too late. This is in particular true for maintenance on maritime equipment, where onshore maintenance is strongly preferred over offshore maintenance and needs to be aligned with the vessel’s operations schedule. However, state-of-the-art predictive maintenance methods rely on black-box machine learning techniques such as deep neural networks that are difficult to interpret and are difficult to accept and work with for the maintenance engineers. The XAIPre project (pronounce Xyper) aims at developing Explainable Predictive Maintenance algorithms that do not only provide the engineers with a prediction but in addition, with a risk analysis on the components when delaying the maintenance, and what the primary indicators are that the algorithms use to create inference. To use predictive maintenance effectively in Maritime operations, the predictive models and also the optimization of the maintenance schedule using these models, need to be aware of the past and planned vessel activities, since different activities affect the lifetime of the machines differently. For example, the degradation of a hydraulic pump inside a crane depends on the type of operations the crane but also the vessel is performing. Thus the models do not only need to be explainable but they also need to be aware of the context which is in this case the vessel and machinery activity. Using sensor data processing and edge-computing technologies that will be developed and applied by the Hanze University of Applied Sciences in Groningen (Hanze UAS), context information is extracted from the raw sensor data. The XAIPre project combines these Explainable Context Aware Machine Learning models with state-of-the-art optimizers, that are already developed and available from the NWO CIMPLO project at LIACS, in order to develop optimal maintenance schedules for machine components. The resulting XAIPre prototype offers significant competitive advantages for maritime companies such as Heerema, by increasing the longevity of machine components, increasing worker safety and decreasing maintenance costs.