Fish and vegetable protein sources are relatively underutilized for human consumption in comparison to meat, dairy and egg protein sources. Only part of the available fish proteins is used: fish is to small for human consumption and fish has a high proportion of by-products, up to 50% of fish weight is not used. This project aims to develop products and processes for creating healthy high valued consumer products based upon vegetable proteins and fish/crustacean proteins from by-products or from neglected fish. Three innovative processes are developed:1) Iso-electric solubilization and precipitation of fish/crustacean proteins from by-products,2) Networked vegetable/fish protein textures based upon low moisture extrusion processes3) Fibrous vegetable/fish protein textures produced with high moisture extrusion processes.Two innovative processes are applied:1) Food products with water-oil-water emulsions with isolated fish proteins2) Food products with sous-vide prepared fish fillets in semi industrial context.Different consumer product prototypes will be developed like fish nuggets, fish flakes and fish crackers.The Nuprotex project created successfully two new processes. Hanzehogeschool developed the process for fish protein isolation based upon iso electric solubilization and precipitation. With this process it was possible to recover about 15% weight of additional proteins from fish by-products. Please be aware that the yield of fish fillets from the fish is only about 30% of fish weight. So this is an important increase in food grade proteins! These Isolated Fish Proteins are successfully converted into several consumer prototype products like multiple emulsions for savory liquid products and fish cake/cracker applications. A sous-vide cooking process for fish fillets was developed with respect to microbial safety. It was shown that a microbial safe route could be developed, however further research is necessary to confirm these preliminary results.DIL has developed successfully an high moisture extrusion process for isolated fish proteins, grinded fish by products and vegetable proteins. This semi-finished product is successfully applied by for developing deep fried fish nuggets and fish burgers. DIL produced fish pellets which are suitable for applications as fish feed as is demonstrated in actual trials. Further research must demonstrate the quality of the feed product in actual growth experiments with fish.This project has clearly demonstrated that it is possible to produce with fish by-products added value consumer products. A possible increase of food-grade fish protein of about 15% on fresh weight base of processed fish is possible.
Fish and vegetable protein sources are relatively underutilized for human consumption in comparison to meat, dairy and egg protein sources. Only part of the available fish proteins is used: fish is to small for human consumption and fish has a high proportion of by-products, up to 50% of fish weight is not used. This project aims to develop products and processes for creating healthy high valued consumer products based upon vegetable proteins and fish/crustacean proteins from by-products or from neglected fish. Three innovative processes are developed:1) Iso-electric solubilization and precipitation of fish/crustacean proteins from by-products,2) Networked vegetable/fish protein textures based upon low moisture extrusion processes3) Fibrous vegetable/fish protein textures produced with high moisture extrusion processes.Two innovative processes are applied:1) Food products with water-oil-water emulsions with isolated fish proteins2) Food products with sous-vide prepared fish fillets in semi industrial context.Different consumer product prototypes will be developed like fish nuggets, fish flakes and fish crackers.The Nuprotex project created successfully two new processes. Hanzehogeschool developed the process for fish protein isolation based upon iso electric solubilization and precipitation. With this process it was possible to recover about 15% weight of additional proteins from fish by-products. Please be aware that the yield of fish fillets from the fish is only about 30% of fish weight. So this is an important increase in food grade proteins! These Isolated Fish Proteins are successfully converted into several consumer prototype products like multiple emulsions for savory liquid products and fish cake/cracker applications. A sous-vide cooking process for fish fillets was developed with respect to microbial safety. It was shown that a microbial safe route could be developed, however further research is necessary to confirm these preliminary results.DIL has developed successfully an high moisture extrusion process for isolated fish proteins, grinded fish by products and vegetable proteins. This semi-finished product is successfully applied by for developing deep fried fish nuggets and fish burgers. DIL produced fish pellets which are suitable for applications as fish feed as is demonstrated in actual trials. Further research must demonstrate the quality of the feed product in actual growth experiments with fish.This project has clearly demonstrated that it is possible to produce with fish by-products added value consumer products. A possible increase of food-grade fish protein of about 15% on fresh weight base of processed fish is possible.
Purpose The purpose of this research was to explore women’s experiences after breast surgery with scar characteristics and symptoms, and its impact on their health-related quality of life (HRQOL). Material andmethods A qualitative study using semi-structured face-to-face interviewswas conducted among women following prophylactic, oncologic, or reconstructive breast surgery in the Netherlands. A directed content analysis was performed using guiding themes. Themes were “physical and sensory symptoms,” “impact of scar symptoms,” “personal factors,” “impact of scar interventions,” and “change over time.” Results The study population consisted of 26 women after breast surgery. Women experienced a wide range of symptoms like adherence, stiffness, pain, and uncomfortable sensations. Scar characteristics as visibility, location, texture, and size, influenced satisfaction with their appearance. The impact of scar symptoms is reflected in physical, social, emotional, and cognitive functioning, thereby affecting HRQOL. The experienced impact on HRQOL depended on several factors, like personal factors as the degree of acceptance and environmental factors like social support. Conclusion Women can experience a diversity of scar characteristics and symptoms, which play a central role in the perceived impact on HRQOL. Since scarring can have a considerable impact on HRQOL, scarring after prophylactic, oncologic and reconstructive breast surgery should be given more attention in clinical practice and research. Implications for Cancer Survivors Considering scarring as a common late effect after breast surgery and understanding the variety of experiences, which could impact HRQOL of women, can be beneficial in sufficient information provision, expectation management, and informed decision making.
Mycelium biocomposites (MBCs) are a fairly new group of materials. MBCs are non-toxic and carbon-neutral cutting-edge circular materials obtained from agricultural residues and fungal mycelium, the vegetative part of fungi. Growing within days without complex processes, they offer versatile and effective solutions for diverse applications thanks to their customizable textures and characteristics achieved through controlled environmental conditions. This project involves a collaboration between MNEXT and First Circular Insulation (FC-I) to tackle challenges in MBC manufacturing, particularly the extended time and energy-intensive nature of the fungal incubation and drying phases. FC-I proposes an innovative deactivation method involving electrical discharges to expedite these processes, currently awaiting patent approval. However, a critical gap in scientific validation prompts the partnership with MNEXT, leveraging their expertise in mycelium research and MBCs. The research project centers on evaluating the efficacy of the innovative mycelium growth deactivation strategy proposed by FC-I. This one-year endeavor permits a thorough investigation, implementation, and validation of potential solutions, specifically targeting issues related to fungal regrowth and the preservation of sustained material properties. The collaboration synergizes academic and industrial expertise, with the dual purpose of achieving immediate project objectives and establishing a foundation for future advancements in mycelium materials.
Within the food industry there is a need to be able to rapidly react to changing regulatory requirements and consumer preferences by adjusting recipes, processes, and products. A good knowledge of the properties of food ingredients is crucial in this process. Currently this knowledge is available in scattered heterogeneous resources such as scientific peer-reviewed articles, databases, recipes, food blogs as well as in the experience of food-experts. This prevents, in practice, the efficient integration and use of this knowledge, leading to inefficiency and missed opportunities. In this project we will build a structured database of properties of food ingredients, focusing in particular on the taste and texture properties. By large-scale collection and text mining on a large number of textual resources, a comprehensive data set on ingredient properties will be created, along with knowledge on the relationships between these ingredients. This database will then be used for to find new potential applications for healthy and taste enhancing ingredient combinations by network-based discovery methods and artificial intelligence algorithms will be used. A concrete focus will be on application questions formulated by the industrial partners. The resulting hypothesis will be validated in a real life setting at the premises of the industrial partners. The deliverables of this project will be: - A reusable open-access ingredient database that is accessible via a user-friendly web portal - A set of state-of-the-art mining algorithms that can address a wide variety of industry driven use cases - Novel product formulations that can be further developed for the consumer and business2business market
In this project we will build a structured database of properties of food ingredients, focusing in particular on the taste and texture properties. By large-scale collection and text mining on a large number of textual resources, a comprehensive data set on ingredient properties will be created, along with knowledge on the relationships between these ingredients. This database will then be used for to find new potential applications for healthy and taste enhancing ingredient combinations by network-based discovery methods and artificial intelligence algorithms will be used. A concrete focus will be on application questions formulated by the industrial partners. The resulting hypothesis will be validated in a real life setting at the premises of the industrial partners.The deliverables of this project will be:• A reusable open-access ingredient database that is accessible via a user-friendly web portal• A set of state-of-the-art mining algorithms that can address a wide variety of industry driven use cases• Novel product formulations that can be further developed for the consumer and business2business market