Dienst van SURF
© 2025 SURF
We present a number of methodological recommendations concerning the online evaluation of avatars for text-to-sign translation, focusing on the structure, format and length of the questionnaire, as well as methods for eliciting and faithfully transcribing responses.
LINK
Communication between healthcare professionals and deaf patients has been particularly challenging during the COVID-19 pandemic. We have explored the possibility to automatically translate phrases that are frequently used in the diagnosis and treatment of hospital patients, in particular phrases related to COVID-19, from Dutch or English to Dutch Sign Language (NGT). The prototype system we developed displays translations either by means of pre-recorded videos featuring a deaf human signer (for a limited number of sentences) or by means of animations featuring a computer-generated signing avatar (for a larger, though still restricted number of sentences). We evaluated the comprehensibility of the signing avatar, as compared to the human signer. We found that, while individual signs are recognized correctly when signed by the avatar almost as frequently as when signed by a human, sentence comprehension rates and clarity scores for the avatar are substantially lower than for the human signer. We identify a number of concrete limitations of the JASigning avatar engine that underlies our system. Namely, the engine currently does not offer sufficient control over mouth shapes, the relative speed and intensity of signs in a sentence (prosody), and transitions between signs. These limitations need to be overcome in future work for the engine to become usable in practice.
In this paper we describe our work in progress on the development of a set of criteria to predict text difficulty in Sign Language of the Netherlands (NGT). These texts are used in a four year bachelor program, which is being brought in line with the Common European Framework of Reference for Languages (Council of Europe, 2001). Production and interaction proficiency are assessed through the NGT Functional Assessment instrument, adapted from the Sign Language Proficiency Interview (Caccamise & Samar, 2009). With this test we were able to determine that after one year of NGT-study students produce NGT at CEFR-level A2, after two years they sign at level B1, and after four years they are proficient in NGT on CEFR-level B2. As a result of that we were able to identify NGT texts that were matched to the level of students at certain stages in their studies with a CEFR-level. These texts were then analysed for sign familiarity, morpheme-sign rate, use of space and use of non-manual signals. All of these elements appear to be relevant for the determination of a good alignment between the difficulty of NGT signed texts and the targeted CEFR level, although only the morpheme-sign rate appears to be a decisive indicator