Dienst van SURF
© 2025 SURF
PURPOSE: The Nasality Severity Index 2.0 (NSI 2.0) forms a new, multiparametric approach in the assessment of hypernasality. To enable clinical implementation of this index, the short- and long-term test-retest reliability of this index was explored. METHODS: In 40 normal-speaking adults (mean age 32y, SD 11, 18-56y) and 29 normal-speaking children (mean age 8y, SD 2, 4-12y), the acoustic parameters included in the NSI 2.0 (i.e. nasalance of the vowel /u/ and an oral text, and the voice low tone to high tone ratio (VLHR) of the vowel /i/) were obtained twice at the same test moment and during a second assessment two weeks later. After determination of the NSI 2.0, a comprehensive set of statistical measures was applied to determine its reliability. RESULTS: Long-term variability of the NSI 2.0 and its parameters was slightly higher compared to the short-term variability, both in adults and in children. Overall, a difference of 2.82 for adults and 2.68 for children between the results of two consecutive measurements can be interpreted as a genuine change. With an ICC of 0.84 in adults and 0.77 in children, the NSI 2.0 additionally shows an excellent relative consistency. No statistically significant difference was withheld in the reliability of test-retest measurements between adults and children. CONCLUSION: Reliable test-retest measurements of the NSI 2.0 can be performed. Consequently, the NSI 2.0 can be applied in clinical practice, in which successive NSI 2.0 scores can be reliably compared and interpreted. LEARNING OUTCOMES: The reader will be able to describe and discuss both the short-term and long-term test-retest reliability of the Nasality Severity Index 2.0, a new multiparametric approach to hypernasality, and its parameters. Based on this information, the NSI 2.0 can be applied in clinical practice, in which successive NSI 2.0 scores, e.g. before and after surgery or speech therapy, can be compared and interpreted.
Literature highlights the need for research on changes in lumbar movement patterns, as potential mechanisms underlying the persistence of low-back pain. Variability and local dynamic stability are frequently used to characterize movement patterns. In view of a lack of information on reliability of these measures, we determined their within- and between-session reliability in repeated seated reaching. Thirty-six participants (21 healthy, 15 LBP) executed three trials of repeated seated reaching on two days. An optical motion capture system recorded positions of cluster markers, located on the spinous processes of S1 and T8. Movement patterns were characterized by the spatial variability (meanSD) of the lumbar Euler angles: flexion–extension, lateral bending, axial rotation, temporal variability (CyclSD) and local dynamic stability (LDE). Reliability was evaluated using intraclass correlation coefficients (ICC), coefficients of variation (CV) and Bland-Altman plots. Sufficient reliability was defined as an ICC ≥ 0.5 and a CV < 20%. To determine the effect of number of repetitions on reliability, analyses were performed for the first 10, 20, 30, and 40 repetitions of each time series. MeanSD, CyclSD, and the LDE had moderate within-session reliability; meanSD: ICC = 0.60–0.73 (CV = 14–17%); CyclSD: ICC = 0.68 (CV = 17%); LDE: ICC = 0.62 (CV = 5%). Between-session reliability was somewhat lower; meanSD: ICC = 0.44–0.73 (CV = 17–19%); CyclSD: ICC = 0.45–0.56 (CV = 19–22%); LDE: ICC = 0.25–0.54 (CV = 5–6%). MeanSD, CyclSD and the LDE are sufficiently reliable to assess lumbar movement patterns in single-session experiments, and at best sufficiently reliable in multi-session experiments. Within-session, a plateau in reliability appears to be reached at 40 repetitions for meanSD (flexion–extension), meanSD (axial-rotation) and CyclSD.
MULTIFILE
In The Netherlands, the 4-Skills Scan is an instrument for physical education teachers to assess gross motor skills of elementary school children. Little is known about its reliability. Therefore, in this study the test–retest and inter-rater reliability was determined. Respectively, 624 and 557 Dutch 6- to 12-year-old children were analyzed for test re-test and inter-rater reliability. All tests took place within the school setting. The outcome measure was age-expected motor performance (in years). Results showed a small practice effect of .24 years for re-test sessions and assessment of motor skills was possible with acceptable precision (standard error of measurement = .67 years). Overall, intraclass correlation coefficient (ICC) was .93 (95% confidence interval: .92–.95) for test–retest reliability and .97 for inter-rater reliability. For the repeated measures, the smallest detectable change (SDC) was 1.84 and limits of agreement were –1.60 and 2.08 years. It can be concluded that the 4-Skills Scan is a reliable instrument to assess gross motor skills in elementary school children.