Dienst van SURF
© 2025 SURF
Organizing entrepreneurial collaboration in small, self-directed teams is gaining popularity. The underlying co-creation processes of developing a shared team vision were analyzed with a core focus on three underlying processes that originate from the shared mental models framework. These processes are: 1) the emergence of individual visions and vision integration, 2) conflict solving, and 3) redesigning the emerging knowledge structure. Key in the analysis is the impact of these three processes on two outcome variables: 1)the perceived strength of the co-creation process, 2) the final team vision. The influence of business expertise and the relationship between personality traits and intellectual synergy was also studied. The impact of the three quality shared mental model (SMM) variables proves to be significant and strong, but indirect. To be effective, individual visions need to be debated during a second conflict phase. Subsequently, redesigning the shared knowledge structure resulting from the conflict solving phase is a key process in a third elaboration phase. This sequence positively influences the experienced strength of the co-creation process, the latter directly enhancing the quality of the final team vision. The indirect effect reveals that in order to be effective, the three SMM processes need to be combined, and that the influence follows a specific path. Furthermore, higher averages as well as a diversity of business expertise enhance the quality of the final team vision. Significant relationships between personality and an intellectual synergy were found. The results offer applicable insights for team learning and group dynamics in developing an entrepreneurial team vision. LinkedIn: https://www.linkedin.com/in/rainer-hensel-phd-8ba44a43/ https://www.linkedin.com/in/ronald-visser-4591034/
Learning teams in higher education executing a collaborative assignment are not always effective. To remedy this, there is a need to determine and understand the variables that influence team effectiveness. This study aimed at developing a conceptual framework, based on research in various contexts on team effectiveness and specifically team and task awareness. Core aspects of the framework were tested to establish its value for future experiments on influencing team effectiveness. Results confirmed the importance of shared mental models, and to some extent mutual performance monitoring for learning teams to become effective, but also of interpersonal trust as being conditional for building adequate shared mental models. Apart from the importance of team and task awareness for team effectiveness it showed that learning teams in higher education tend to be pragmatic by focusing primarily on task aspects of performance and not team aspects. Further steps have to be taken to validate this conceptual framework on team effectiveness.
In literature, co-teaching is mostly defined as an instrumental and pedagogical means delivered by collaborating special and regular teachers, from which students with and without special educational needs benefit in regular schools. The importance of a shared vision on the part of members of co-teaching teams as to what they consider as good education for students is not mentioned in definitions of co-teaching. The authors argue that sense-making by reflection about what can be considered as good education – good teaching and good learning – is essential when co-teachers want to understand or change their practice or relationship with their partner. We reviewed 17 articles about co-teaching teams’ professional development and identified that challenges to co-teachers’ professionalisation mostly were directed to interpersonal and normative aspects of development in co-teaching teams. We elaborate on five distinguished movements that can bring about change in teacher professionalism. These movements correspond to the challenges retrieved from the literature review and can be used to contribute to move toward a new perspective on professionalism of co-teachers. A contemporary definition of co-teaching is proposed because former definitions do not suffice to express the value of constructing a shared vision on good teaching and learning. We argue that team-reflection is the missing link in terms of enhancing normative professionalism of co-teaching teams and recommend that further research should be conducted to value team-reflection as a means to overcome challenges of co-teaching teams.
LINK
De gezondheidszorg kampt met personeelstekorten en lange wachtlijsten, wat de zorgkwaliteit voor patiënten ernstig treft. De toenemende vergrijzing van de bevolking en een toenemend tekort aan geschoold personeel verergeren deze problemen. Hierdoor komen zowel zorgverleners als mantelzorgers onder grote druk te staan [1]. In dit project wordt met behulp van AI-onderzoek gedaan naar de haalbaarheid van het automatisch detecteren van de gesteldheid van zorgbehoevenden. Dit biedt mogelijkheden om de druk op zorgverleners en mantelzorgers te verlichten door taken te automatiseren en hen te ondersteunen bij het identificeren van de behoeften van de patiënten. De huidige tekorten in de zorg zijn verontrustend en daarom niet houdbaar voor de kwaliteit van de zorg. Automatisering is daarom essentieel om de zorgkwaliteit te waarborgen. Het consortium bestaat uit zorginstelling De Zijlen, Valtes en het NHL Stenden Lectoraat Computer Vision & Data Science. Vanuit De Zijlen en Valtes is de vraag ontstaan voor de automatische detectie van de gesteldheid van zorgbehoevenden. Gezamenlijk wordt de technische haalbaarheid onderzocht om de business-case te ondersteunen. Daarnaast is het doel van dit project om met een proof-of-concept een breder netwerk van belangenorganisaties, ontwikkelaars en eindgebruikers aan te spreken. Er wordt gewerkt in een multidisciplinair team van studenten, docent-onderzoekers, lectoren, ontwikkelaar en potentiële eindgebruikers.
In het ziekenhuis kan elke fout een leven kosten. Zo kan al een kleine bereidingsfout bij het klaarmaken van intraveneuze medicijnen (IV) leiden tot levensbedreigende omstandigheden voor de patiënt. Bereiding van dit type medicijnen gebeurt in de apotheek en op de verpleegafdeling. Met name op de verpleegafdeling is het een drukke en onvoorspelbare setting. Wereldwijd komen in deze setting ernstige bereidingsfouten nog te frequent voor. Om deze menselijke fouten te reduceren, wordt in deze KIEM aanvraag een proof-of-concept ‘slim oog’ ontwikkeld die vlak voor de toediening detecteert of de juiste dosis aanwezig is, of het type medicijn correct is en geen vervuiling aanwezig is. Het slimme oog maakt gebruik van hyperspectrale technologie en artificial intelligence, en is een samenwerking tussen de Computer Vision & Data Science afdeling van NHL Stenden Hogeschool, de automatische medicijncontrole specialist ZiuZ, en het Tjongerschans ziekenhuis. De unieke combinatie tussen nieuwe AI-technieken, hyperspectrale techniek en de toepassing op intraveneuze medicijnen is voor dit consortium technisch nieuw, en is nog niet eerder ontwikkeld voor de toepassing aan het bed of in de medicijnkamer op de verpleegafdeling. De onvoorspelbare setting en de urgentie aan het bed maakt dit onderzoek technisch uitdagend. Tevens moet het uiteindelijke device klein en draagbaar en snel werkzaam zijn. Om de grote verscheidenheid aan mogelijke gebruik scenario's en menselijke fouten te vangen in het algoritme, wordt een door NHLS ontwikkelde simulatie procedure gevolgd: met nabootsing van de praktijksituatie in samenwerking met zorgverleners, met opzettelijke fouten, en computer gegenereerde beeldmanipulatie. Het project zal geïntegreerd worden in het onderwijs volgens de design-based methode, met teams bestaande uit domein experts, bedrijven, docent-onderzoekers en studenten. Het uiteindelijke doel is om met een proof-of-concept aan-het-bed demonstrator een groot consortium van ziekenhuizen, ontwikkelaars en eindgebruikers enthousiast te maken voor een groter vervolgproject.
Fietsen is diepgeworteld in de Nederlandse cultuur en draagt bij aan een duurzame, gezonde en mobiele samenleving. Met de opkomst van nieuwe (elektrische) vervoersmiddelen, neemt ook de complexiteit van het verkeer toe en ontstaan er nieuwe veiligheidsuitdagingen. Om deze effectief aan te pakken, is het van groot belang om beleidsmakers en educatieve instellingen te voorzien van diepgaande inzichten in fietsgedrag en verkeerssituaties. Met dit project richten we ons op het leveren van deze inzichten door middel van geavanceerde AI-technologieën. De huidige software-oplossingen gericht op het verbeteren van de verkeersveiligheid zijn vaak beperkt in hun functionaliteit en toepassingsgebied. Ze richten zich voornamelijk op het tellen en volgen van verkeersdeelnemers, zonder de complexiteit van fietsverkeer te analyseren. Ons project onderscheidt zich door het gebruik van recente state-of-the-art AI-methoden om complexe verkeerssituaties en fietsgedrag automatisch te analyseren en te classificeren. Ons AI-gestuurde systeem maakt gebruik van Nederlandse videobeelden afkomstig van zowel statische camera's als camera's gemonteerd op fietsers. Hierdoor kunnen we onveilig fietsgedrag en risicovolle situaties herkennen en aanbevelingen doen aan beleidsmakers voor infrastructuuraanpassingen. Het implementeren van AI in opleidingen zoals ruimtelijke ordening zal leiden tot een verfrissend curriculum dat studenten future-proof opleidt. Samen werken we aan de ruimtelijke ontwikkeling van de toekomst. Bovendien kunnen de AI-tools worden gebruikt om lesmateriaal te ontwikkelen, waardoor zij beter inzicht krijgen in de factoren die bijdragen aan onveilige situaties en hoe zij hun gedrag kunnen aanpassen om het risico op ongevallen te verminderen. Het aanvragende consortium bestaat uit een multidisciplinair team van onderzoekers en studenten uit de AI, computer vision, verkeerspsychologie, verkeerskunde en ruimtelijke ontwikkeling, die samenwerken met publieke instellingen en commerciële partners aan een open-source intelligent softwaresysteem. Samengevat zal dit project niet alleen de huidige kennis over fietsgedrag en verkeersveiligheid uitbreiden, maar ook de manier waarop beleidsmakers en educatieve instellingen met deze kwesties omgaan transformeren.