Dienst van SURF
© 2025 SURF
The Andean lupin (Lupinus mutabilis) is one of the lost crops of Incas and has been grown in South America and as a food crop for thousands of years. The seeds are the main source of commercial value regarding the high content of oil (about 20%), protein (about 43%) and carbohydrates (about 33%). A European Union H2020 project, LIBBIO, aims to develop and optimize the breeding and cropping of the Andean lupin in the Europe, and to process the lupin seeds for new and high-value products for consumers and for incorporation into otherproducts. This study works at optimizing the oil extraction from the lupin seeds using supercritical carbon dioxide (scCO2), which has been tested for lupin oil extraction and is advantageous over organic extractants due to the mild operating temperature, costeffectiveness, nontoxicity, and easy post-separation.In the study designed by response surface methodology, the operating pressure,temperature, scCO2 flowrate, and sample mesh size, were investigated on their effect on the oil extraction efficiency. The pressure, scCO2 flowrate and mesh size were found to affect the extraction efficiency significantly. The higher the pressure and the smaller the mesh, the more oil was extracted over a specific period. Optimally about 85% of the oil was extracted by scCO2 compared with conventional Soxhlet extraction using hexane as the extractant. Oleicacid (46%) and Linoleic acid (32%) are the two main fatty acids in the extracted oil. About 80% of the fatty acids are unsaturated. The stearic acid is one of the main saturated fatty acids, which has relatively positive effects on human health to others. The pressure was found to significantly affect the fractions of the saturated and unsaturated fatty acids. The content of tocopherols in the extracted oil ranged from 1 to 20 mg/100g oil, which is comparable withliterature value.
Oil extraction from Andean lupin beans (Lupinus mutabilis SWEET) via supercritical carbon dioxide (scCO2) was studied on both lab scale and pilot scale. On the lab scale, the effect of pressure, solvent-to-feed ratio (S/F), sample particle size and temperature on oil yield were evaluated. The oil quality (fatty acid [FA] composition and tocopherol content) were investigated. Five-hour scCO2 extraction yielded about 86% oil of Soxhlet extraction (using hexane as solvent). The fraction of unsaturated FA rose with extraction pressure at specific time. High tocopherol contents were detected in oils extracted at low pressure. An increase in temperature was unfavorable to oil and tocopherol yield, thereby confirming the validity for preserving oil extract quality under a mild scCO2 extraction condition. Oil quality and yield did not have identical optimum settings, opening up possibilities for producing different qualities of oils. Pilot-scale extraction offered comparable oil yield to lab-scale extraction at similar S/F ratio. Economic evaluation showed that it is promising to implement industrial scale scCO2 process for lupin oil extraction. It was predicted that, at a specific industrial scale of extraction (2 × 1000 L, 550 bar, 40°C and S/F of 24), the manufacturing cost of oils got close to actual commercial production cost.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.